牛顿万有引力定律

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自牛顿万有引力定律
两个物体互相吸引

牛顿的万有引力定律(英语:Newton's law of universal gravitation),通称万有引力定律,定律指出,两个质点彼此之间相互吸引的作用力,是与它们的质量乘积成正比,并与它们之间的距离成平方反比。

万有引力定律是由艾萨克·牛顿称之为归纳推理的经验观察得出的一般物理规律。它是经典力学的一部分,是在1687年于《自然哲学的数学原理》中首次发表的,并于1687年7月5日首次出版。当牛顿的书在1686年被提交给英国皇家学会时,罗伯特·胡克宣称牛顿从他那里得到了距离平方反比律。

此定律若按照现代语文,明示了:每一点质量都是通过指向沿著两点相交线的力量来吸引每一个其它点的质量。力与两个质量的乘积成正比,与它们之间的距离平方成反比。关于牛顿所明示质量之间万有引力理论的第一个实验,是英国科学家亨利·卡文迪什于1798年进行的卡文迪许实验。这个实验发生在《自然哲学的数学原理》出版111年之后,也是在他去世大约71年之后。

库仑定律类似于牛顿的引力定律,用来计算两个带电体之间产生的电力的大小。两者都是平方反比定律,其中作用力与物体之间的距离平方成反比。库仑定律是用两个电荷来代替质量的乘积,用静电常数代替引力常数。

牛顿定律的理论基础,在现代的学术界已经被爱因斯坦广义相对论所取代。但它在大多数应用中仍然被用作重力效应的经典近似。只有在需要极端精确的时候,或者在处理非常强大的引力场的时候,比如那些在极其密集的物体上,或者在非常近的距离(比如水星绕太阳的轨道)时,才需要相对论

定律定义

基本定义

牛顿的万有引力定律可以表示如下:

任意两个质点由通过连心线方向上的力相互吸引。该吸引力的大小与它们的质量乘积成正比,与它们距离的平方成反比,与两物体的化学本质或物理状态以及中介物质无关。

标量式

其标量式方程表示为:

其中,

  • :两个物体之间的万有引力
  • : 万有引力常数
  • :物体1的质量
  • :物体2的质量
  • :两个物体之间的距离

依照国际单位制的单位为牛顿(N),的单位为千克(kg),的单位为米(m),常数大约为6.67×10−11 N m2 kg−2(牛顿米的平方每千克的平方)。

向量式

地球万有引力示意图
地球附近空间内的万有引力示意图:在此数量级上地球表面的弯曲可被忽略不计,因此力线可以近似地相互平行并且指向地球的中心

牛顿万有引力定律亦可通过向量方程的形式更加准确地进行表述,而用以计算万有引力的方向和大小。

在下列公式中,以粗体显示的量代表向量

其中,
:物体2作用于物体1的万有引力
: 万有引力常数,其值约等于
:分别为物体1和物体2的质量
:物体2和物体1之间的距离
:物体1物体2的单位向量

可以看出向量式方程的形式与之前给出的标量式方程相类似,区别仅在于在向量式中的F是一个向量,以及在向量式方程的右端被乘上了相应的单位向量。而且,我们可以看出:F12 = − F21.

引力加速度

标量式方程

假设质点的引力加速度为。根据牛顿第二定律,即。将这表达式代入牛顿万有引力方程,则可得到

类似地,亦可得到

依照国际单位制引力加速度(同其他一般加速度)的单位被规定为米每平方秒 (记作)。

请注意上述方程中的,质量的加速度,在实际上并不取决于的取值,即引力加速度大小仅与有关。

向量式方程

同样,引力加速度的向量式方程与其标量式方程相类似:

引力场

球状星团M13证明引力场的存在。

引力场是用于描述在任意空间内某一点的物体每单位质量所受万有引力的矢量场。而在实际上等于该点物体所受的引力加速度。

矢量式

以下是一个普适化的矢量式,可被应用于多于两个物体的情况(例如在地球与月球之间穿行的火箭)的计算。对于两个物体的情况(比如说物体1是火箭,物体2是地球)来说,引力场表示为:

因此可以得到

该公式不受产生引力场的物体的限制。引力场的单位为力除以质量的单位;在国际单位制上,被规定为N·kg−1(牛顿每千克)。

适用范围

如果被讨论的物体具有空间广度(远大于理论上的质点),它们之间的万有引力可以以物体的各个等效质点所受万有引力之和来计算。在极限上,当组成质点趋近于“无限小”时,将需要求出两物体间的力在空间范围上的积分

从这里可以得出:如果物体的质量分布呈现均匀球状时,其对外界物体施加的万有引力吸引作用将同所有的质量集中在该物体的几何中心[1]时的情况相同。(这不适用于非球状对称物体)。

存在的问题

尽管牛顿对万有引力的描述对于众多实际运用案例来说十分地精确,但它也遭遇到一些理论难题,而且被证实不符合一些重要观测结果。

理论难题

  • 没有任何征兆表明万有引力的传送媒介可以被识别出,牛顿自己也对这种无法说明的超距作用感到不满意(参看后文条目“定律局限性”)。
  • 牛顿的理论需要定义万有引力可以瞬时传播。因此给出了古典自然时空观的假设,这样亦能使约翰内斯·开普勒所观测到的角动量守恒成立。但是,这与爱因斯坦的狭义相对论理论有直接的冲突,因为狭义相对论定义了速度的极限——真空中的光速——在此速度下信号可以被传送。

与观测结果不符

牛顿的理论并不能完全地解释出水星在沿其轨道运动到近日点时出现的进动现象[2]。牛顿学说的预言(由其它行星的引力拖曳产生)与实际观察到的进动相比每世纪会出现43弧秒的误差。

牛顿理论预言,在万有引力作用下,光线的偏折只有实际观测结果的一半。广义相对论则与观察结果更为接近。

牛顿理论不能解释为什么所有物体的引力质量与惯性质量相同这一观测现象。广义相对论则将它作为一个基本条件。更多内容,请参阅条目等效原理

定律局限性

当牛顿的非凡工作使万有引力定律能够以数学公式来表达后,他仍然不满于公式中所隐含的超距作用观点。他从来没有在他的文字中给出产生这种能力的原因。在其它情况下,他使用运动的现象来解释物体受到不同力的作用的原因,但是对于万有引力这种情况,他却无法用实验方法来确认运动产生了万有引力。此外,他甚至还拒绝对这个由地面产生的力的起因提出假设,而这一切都违背了科学证据的原则。

牛顿对万有引力的发现埋葬了“哲学家至今仍在徒劳无功地试图探索自然”(philosophers have hitherto attempted the search of nature in vain)这句所谓的真理,就同他深信着的“有各种因素”使得“各种迄今未知的原因”是所有“自然现象”的基础。这些基本的现象至今仍在研究中,而且,虽然存在着许多种的假设,最终答案仍然没有找出。虽然爱因斯坦的假设的确比牛顿的假设更能精确地解释确定案例中万有引力的作用效果,他也从来没有在他的理论中为这种能力赋予一个原因。在爱因斯坦的方程式中,“物质告诉空间怎么弯曲,空间告诉物质怎么移动”。但是这个完全异于牛顿世界的新的思想,仍不足使爱因斯坦所给出“产生这种能力的原因”比万有引力定律使牛顿所赋予的原因更能使空间弯曲。牛顿自己说:

如果人类的科学最终能够发现万有引力是如何产生(制造)的,牛顿的梦想也将随之实现。

需要注意的是,这里使用的单词“原因(cause)”并不是“起因(cause)和影响”或者“被告导致(cause)受害者死亡”中所表示的意义。何况,当牛顿使用单词“原因(cause)”时,他(明显地)意指为一种“解释”。或者说,像“牛顿学说的万有引力是行星运动的原因”这个短语的意思就是牛顿学说的万有引力解释了行星的运动。参看条目因果

宾利的悖论

宾利的悖论是一个关于宇宙整体的悖论,指出当牛顿的引力理论应用于宇宙学时,会出现问题。牛顿导出了他的万有引力公式后,他在写给当时的剑桥哲学家理查德·宾利英语Richard Bentley(Richard Bentley)的一封信中说,如果所有的恒星都由万有引力相互吸引的话,那么一个会被吸引到另一个;恒星之间的距离将逐渐地缩短,最后它们应该会合并成为一个点。牛顿认为,宇宙中的每颗恒星都应该被其它恒星所吸引,它们之间不会维持固定的距离,而是应该全部叠落在一起,变成单一个恒星。牛顿在信中承认了这一点。他宣称上帝会“不断的微调”来防止万有引力应用上预见的结果。[3]

参见

参考文献

  1. ^ Proposition 75, Theorem 35: p.956 - I.Bernard Cohen and Anne Whitman, translators: Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy. Preceded by A Guide to Newton's Principia, by I.Bernard Cohen. University of California Press 1999 ISBN 0-520-08816-6 ISBN 0-520-08817-4
  2. ^ Max Born (1924), Einstein's Theory of Relativity (The 1962 Dover edition, page 348 lists a table documenting the observed and calculated values for the precession of the perihelion of Mercury, Venus, and Earth.)
  3. ^ Clegg, Brian. What and How Big?. Before the Big Bang: The Prehistory of Our Universe. St. Martin's Press. 4 August 2009: 32–35. ISBN 9780312385477