康威多面體表示法

本页使用了标题或全文手工转换
维基百科,自由的百科全书
此圖顯示了從立方體上的三種康威多面體表示運算,可產生11種新的多面體。新的多面體投影在正方體上一顯示其拓撲變化,以便更清楚。頂點都標有圓圈的所有形式。

康威多面體表示法是用來描述多面體的一種方法。 一般是用種子多面體(seed)為基礎並標示對種子多面體做的操作或運算

種子多面體一般都為正多面體正多邊形密鋪,表示的字母則取他們名字的第一個字母,例如:

另外柱體和錐體也可以作為種子,並以它是底面邊數加一個字母表示:

例如種子“P5”是指五角柱、“P10”是指十角柱、“Y6”是指六角錐、“J86”是指球狀屋頂、“A86”是指86角反稜柱。

任何凸多面體皆可以當作種子,前提是它可以執行操作或運算

何頓·康威提出這個想法, 就像克卜勒的截角定義,建立相關的多面體相同的對稱性。 它的多面體表示法能從正多面體種子表示所有阿基米德立體半正多面體卡塔蘭立體。 在一系列的應用中,康威多面體表示法可以產生許多高階多面體。

多面體的運算

下面列出康威多面體表示法中,多面體的運算符號,那些運算通常類似幾何變換,並以 (v,e,f) 表示進行該運算或操作後多面體的變化。

基本操作
運算符 範例 運算符號名稱 別名 英文名 替代
同構
頂點 描述 例子
原像 Seed v e f 來源種子
d 對偶 dual f e v 產生對偶多面體-每個頂點創建一個新的面,或面的重心當作新的頂點。
a 截半 ambo e 2e 2 + e 邊是新的頂點,舊的頂點消失,或將邊的中點當作新的頂點。(rectify)
j 會合 join da e + 2 2e e 每個面都加入上當高的錐體,使相鄰面的錐體各有一面互相共面,形成四邊形。
t 截角 truncate dkd 2e 3e e + 2 截去所有頂點
conjugate kis
k n角化 kis dtd e + 2 3e 2e 每個面都加入角錐.
i 過截角 雙截角 -- dk 2e 3e e + 2 Dual of kis. (bitruncation)
n -- -- kd e + 2 3e 2e Kis of dual
e 小斜方
擴展英语Expansion (geometry)
expand aa = aj 2e 4e 2e + 2 在每個頂點建立新的面,並在各邊建立四邊形。 (cantellate)
o 正交 菱形
鳶形
有時作
四角化
ortho de = ja = jj 2e + 2 4e 2e 每個n邊形面被分割成n個四邊形。
b 大斜方 bevel ta 4e 6e 2e + 2 加入新的面代替邊和頂點 (在高維多胞體稱為cantitruncation).)
m
有時作
三角化
meta db = kj 2e + 2 6e 4e 將n邊形的面切割成2n個三角形
擴展操作
運算符 範例 運算符號名稱 別名 英文名 替代
同構
頂點 描述 例子
原像 Seed v e f Seed form
r 手性鏡像 鏡射 reflect v e f 產生手性鏡像
h 交錯
*
half * v/2 e f+v/2 Alternation, remove half vertices,
limited to seed polyhedra with even-sided faces
部分截半
部分截角
uncompleted
rectifie/truncate
e 2e 2 + e 對某些條件面截半,其餘面截角 tO
c 倒角 chamfer v + 2e  4e f + e 將邊用六邊形取代 T
雙倒角 v + 2e  4e f + e 將邊用兩個五邊形取代
- - dc f + e 4e v + 2e
p 旋轉 propellor
(Hart)
v + 2e 4e f + e 將面旋轉,並在頂點建立四邊形 (self-dual)
- - dp = pd f + e 4e v + 2e
s 扭稜 snub dg = hta 2e 5e 3e + 2 「擴大和扭曲」 - 每個頂點創建一個面,每條邊創建了兩個新的三角形
g 陀螺 gyro ds 3e + 2 5e 2e 每個n邊形面被切割成n個五邊形。
w 旋面 whirl v+4e 7e f+2e 將面旋轉,並在頂點建立與原面相似但是旋轉的新面
此操作會在邊上建立兩個六邊形
- - dw f+2e 7e v+4e 旋面的對偶

這些運算符號的運算優先順序皆為由右至左。例如:

所有的操作都保有對稱性,除了s和g是扭曲的像並失去了鏡射對稱。

例子

正方體
"seed"
截半
截角 双截角(Bitruncation) 离面
(Cantellation)
大斜方截半
(Omnitruncation)
扭稜(Snub)

C

aC = djC

tC = dkdC

tdC = dkC

eC = aaC = doC

bC = taC = dmC = dkjC

sC = dgC
對偶 加入錐體
(相鄰共面)
加入錐體
(到外接球)
正交
(edge-bisect)

(full-bisect)
陀螺

dC

jC = daC

kdC = dtC

kC = dtdC

oC = deC = daaC

mC = dbC = kjC

gC = dsC

生成標準種子

所有的五個正多面體皆可以從棱柱種子經過零至兩個運算或操作而產生:

康威的符號擴展

上述的運算和操作可以從正多面體種子或柱體錐體的種子產生所有的半正多面體卡塔蘭立體柏拉圖立體阿基米德立體。 許多多面體都可由高階的組合操作還表示,但是某些特別的多面體需要更多的符號來表示。

例如,幾何藝術家George W. Hart定義他的操作稱為"propellor",和另一個反映創建鏡像圖像的旋轉形式"reflect"。

  • p – "propellor" – 旋轉建立四邊形於頂點。這個操作的對偶多面體是本身: dpX=pdX。
  • r – "reflect" – 對種子進行鏡射變換。一般沒已影響,除非有sg的種子

詹森多面體擴展

為了表達詹森多面體,諾曼·詹森也定義了一些符號來表達它的多面體[1]

  • 下列種子都必須要在後面加註邊數:
    • P = 柱體 (Prism)
    • A = 反稜柱 (Antiprism)
    • Y = 錐體 (Pyramid)
    • Q = 帳塔
    • R = 罩帳
    • L = 三面單元組成一個正方形和對立的三角形
    • U = n邊形,旁邊有三角形交替的邊。
    • J = 直接表示詹森多面體,加註的數字代表詹森多面體的編號。
  • 擴展的符號:
    • + = 將符號後的種子加到符號前的種子之適當的面,可省略
    • - = 在符號前的種子上照到跟符號後種子相同的部分並切除之
    • × = 將符號前動作做符號後的次數次,符號後必為常數,可省略
    • () = 將種子括號並指定動作
  • 例如:

其它的擴展

下面擴展符號也可以用於康威多面體表示法,但是在施萊夫利符號中,更為常用。

  • t0,1 = 截角
  • t0,2 = 截邊:小斜方截半
  • t0,1,2 = 截邊再截角:大斜方截半
  • t0,3 = 截面:向下鋸齒(Runcination) : 切割多面體,同時沿面、邊和頂點,建立新的面代替原來的面、邊和頂點中心。
  • t0,1,3 = 截面再截角
  • t0,2,3 = 截面再截邊
  • t0,1,2,3 = 截面再截邊再截角
  • t0,4 = 截胞 : 切割多胞體,同時沿胞、面、邊和頂點,建立新的胞代替原來的胞、面、邊和頂點中心。
  • t1 = 截半
  • t1,2 = 截半再截邊:雙截角
  • t2
  • h = 交替 alternate

例如:

幾何座標的衍生形式

密鋪

例如: 球面正五邊形密鋪:正十二面體種子 (D)

D

tD

aD

tdD

eD

teD

sD

dD

dteD
例如:歐幾里得平面正六邊形密鋪種子 (H)

H

tH

aH

tdH = H

eH

teH

sH

dH

dtH

daH

dtdH = dH

deH

dteH

dsH
例如: 雙曲面正七邊形密鋪 種子 ( {7,3} )
{7,3}
"seed"
truncate ambo
(rectify)
bitruncate expand
(cantellate)
bevel
(omnitruncate)
snub

{7,3}

t{7,3}

a{7,3}

dk{7,3}

e{7,3}

b{7,3}

s{7,3}
dual join kis
(vertex-bisect)
ortho
(edge-bisect)
meta
(full-bisect)
gyro

d{7,3}

dt{7,3}

j{7,3}

k{7,3}

o{7,3}

m{7,3}

g{7,3}
例如: 三維空間正方體密鋪 種子 ( {4,3,8} )
{4,3,8}
"seed"
truncate ambo
(rectify)
bitruncate expand
(cantellate)
bevel
(omnitruncate)
snub

{4,3,8}

t{4,3,8}

a{4,3,8}

dk{4,3,8}

e{4,3,8}

b{4,3,8}

s{4,3,8}
dual join

d{4,3,8}

dt{4,3,8}

j{4,3,8}

幾何體

例如: 透明的 正四面體 種子 (T)

T

tT

aT

tdT

eT

bT

sT

dT

dtT

jT

kT

oT

mT

gT
例如: 四維空間的 正八胞體 種子 ( {4,3,3} )

{4,3,3}

t{4,3,3}

a{4,3,3}

td{4,3,3}

e{4,3,3}

b{4,3,3}

s{4,3,3}

d{4,3,3}

其他多面體

迭代簡單簡單操作的形式,可以產生更大的多面體,並保持基本對稱性。頂點被假設是對相同半徑的球面。

四面體對稱

八面體對稱

二十面體對稱

菱形

三角形

對偶

手性

手性對偶

參見

外部链接和参考文獻

  1. ^ 存档副本. [2013年8月1日]. (原始内容存档于2013年6月1日).