跳转到内容

根轨迹图

本页使用了标题或全文手工转换
维基百科,自由的百科全书
一个根轨迹图,部份的极点在右半平面,表示当时的系统会不稳定

根轨迹图(root locus)是控制理论稳定性理论中,绘图分析的方式,可以看到在特定参数(一般会是回授系统的环路增益)变化时,系统极点的变化。根轨迹图是由Walter R. Evans英语Walter R. Evans所发展的技巧,是经典控制理论中的稳定性判据,可以判断线性非时变系统是否稳定。

根轨迹图是在复数s-平面中,系统闭回路传递函数极点随著增益参数的变化(参照极零点图英语Pole–zero plot)。

用途

极点位置及二阶系统中自然频率及阻尼比的关系

除了确认系统的稳定性外,根轨迹图也可以用来设计回授系统的阻尼比ζ)及自然频率ωn)。定阻尼比的线是从原点往外延伸的线,而固定自然频率的线是圆心在原点的圆弧。在根轨迹图上选择有想要的阻尼比及自然频率的点,可以计算增益K并且实现其控制器。在许多教材科书上有利用根轨迹图设计控制器的精细技巧,例如超前-滞后补偿器、PI、PD及PID控制器都可以用此技巧来近似设计。

以上使用阻尼比自然频率的定义,前提是假设整个回授系统可以用二阶系统来近似,也就是说系统有一对主要的复数极点,不过多半的情形都不是如此,因此在实做时仍需要针对系统再进行模拟,确认符合需求。

定义

回授系统的根轨迹图是用绘图的方式在复数s-平面上画出在系统参数变化时,回授系统闭回路极点的可能位置。这些点是根轨迹图中满足角度条件(angle condition)的点。根轨迹图中特定点的参数数值可以用量值条件(magnitude condition)来计算。

假设有个回授系统,输入信号、输出信号。其顺向路径传递函数,回授路径传递函数为

此系统的闭回路传递函数[1]

因此,闭回路传递函数的极点为特征方程式的根,方程式的根可以令来求得。

若是一个没有纯粹延迟的系统,的乘积为有理的多项式函数,可以表示为[2]

其中个零点,个极点,而为增益。一般而言,root locus diagram会标示在不同参数时,传递函数极点的位置。而root locus plot就会画出针对任意值下,使的极点 ,但无法看出值变化时,极点移动的趋势。

因为只有的系数以及简单的单项,此有理多项式的值可以用向量的技巧来计算,也就是将量值相乘或是相除,角度相加或是相减。向量公式的由来是因为有理多项式的每一个因式就表示一个s-平面下由的向量,因此可以透过计算每一个向量的量值及角度来计算多项式。

根据矩阵数学,有理多项式的相角等于所有分子项的角度和,减去所有分母项的角度和。因此若要测试s-平面上的一点是否在根轨迹图上,只要看开回路的零点及极点即可,这称为角度条件

有理多项式的量值也是所有分子项的量值乘积,再除以所有分母项量值的乘积。若只是要确认一个s-平面上的点是否在根轨迹图上,不需要计算有理多项式的量值,因为值会变,而且可以是任意的整数。针对根轨迹图上的每一点,都可以计算其对应的值,此即为量值条件

以前绘制根轨迹图会使用名叫Spirule的特殊量角器,可以用来确认角度并且绘制根轨迹图[3]

根轨迹图只能提供在增益变化时闭回路极点的位置资讯。的数值不影响零点的位置,闭回路零点和开回路的零点相同。

角度条件

复数s平面上的点若满足下式,即符合角度条件(angle condition)

其中为整数。

也就是说

开回路零点到点角度的和,减去开回路极点到点角度的和,除后的馀数需等于

量值条件

在根轨迹图上的特定点,数值若使下式成立,就符合量值条件(magnitude condition)

也就是说

.

绘制根轨迹图

RL=根轨迹图,ZARL=zero angle root locus

利用一些基本的技巧,可以用根轨迹法绘制K值变化时极点的轨迹。根轨迹图可以看出回授系统在不同 下的稳定性以及动态特性[4][5]。其规则如下:

P为极点的个数,Z为零点的个数,两者相减即为渐近线的数量:

渐近线和实轴的交点在(称为形心),往外延伸的角度为

其中为所有极点数值的和,为所有明确零点数值的和

  • 根据测试点的相位条件判断其往外延伸的角度
  • 计算分离点(breakaway/break-in points)

根轨迹图上的分离点(二条根轨迹图上的轨迹相交的点)是满足下式的根

只要解开z,实根即为分离点,若是虚数,表示没有分离点。

相关条目

参考资料

  1. ^ Kuo 1967,第331页.
  2. ^ Kuo 1967,第332页.
  3. ^ Evans, Walter R., Spirule Instructions, Whittier, CA: The Spirule Company, 1965 
  4. ^ Evans, W. R., Graphical Analysis of Control Systems, Trans. AIEE, January 1948, 67 (1): 547–551, ISSN 0096-3860, doi:10.1109/T-AIEE.1948.5059708 
  5. ^ Evans, W. R., Control Systems Synthesis by Root Locus Method, Trans. AIEE, January 1950, 69 (1): 66–69, ISSN 0096-3860, doi:10.1109/T-AIEE.1950.5060121 

延伸阅读

  • Ash, R. H.; Ash, G. H., Numerical Computation of Root Loci Using the Newton-Raphson Technique, IEEE Trans. Automatic Control, October 1968, 13 (5), doi:10.1109/TAC.1968.1098980 
  • Williamson, S. E., Design Data to assist the Plotting of Root Loci (Part I), Control Magazine, May 1968, 12 (119): 404–407 
  • Williamson, S. E., Design Data to assist the Plotting of Root Loci (Part II), Control Magazine, June 1968, 12 (120): 556–559 
  • Williamson, S. E., Design Data to assist the Plotting of Root Loci (Part III), Control Magazine, July 1968, 12 (121): 645–647 
  • Williamson, S. E., Computer Program to Obtain the Time Response of Sampled Data Systems, IEE Electronics Letters, May 15, 1969, 5 (10): 209–210, doi:10.1049/el:19690159 
  • Williamson, S. E., Accurate Root Locus Plotting Including the Effects of Pure Time Delay (PDF), Proc. IEE, July 1969, 116 (7): 1269–1271, doi:10.1049/piee.1969.0235 

外部链接