跳转到内容

逆矩阵

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自反矩阵
线性代数
向量 · 向量空间 · 基底  · 行列式  · 矩阵

逆矩陣(inverse matrix),又稱乘法反方陣反矩陣。在线性代数中,給定一个n方陣,若存在一n 階方陣,使得,其中n单位矩阵,則稱可逆的,且逆矩陣,記作

只有方陣(n×n 的矩陣)才可能有逆矩陣。若方阵的逆矩阵存在,则称非奇异方阵或可逆方阵。

行列式類似,逆矩陣一般用於求解聯立方程組。

求法

伴随矩阵法

如果矩阵可逆,则其中伴随矩阵行列式

注意:中元素的排列特点是的第元素是的第元素的代数餘子式。要求得即为求解余因子矩阵转置矩阵

初等变换法

如果矩阵互逆,则。由条件以及矩阵乘法的定义可知,矩阵都是方阵。再由条件以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且换而言之, 均为满矩阵)。换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵。

因为对矩阵施以初等行变换(初等列变换)就相当于在的左边(右边)乘以相应的初等矩阵,所以我们可以同时对施以相同的初等行变换(初等列变换)。这样,当矩阵被变为时,就被变为的逆阵

性质

  1. 为A的转置
  2. (det为行列式

广义逆阵

广义逆阵(Generalized inverse)又称伪逆,是对逆阵的推广。一般所说的伪逆是指摩尔-彭若斯广义逆,它是由E·H·摩爾羅傑·潘洛斯分别独立提出的。伪逆在求解线性最小二乘问题中有重要应用。

参见