File:Batagaika crater NASA.jpg

页面内容不支持其他语言。
這個文件來自維基共享資源
维基百科,自由的百科全书

Batagaika_crater_NASA.jpg(720 × 480像素,文件大小:164 KB,MIME类型:image/jpeg


描述
English: The walls of this immense crater look as though they could have been scooped out of ice cream, but for the protruding ends of plant roots. And at more than 85 meters (275 feet) tall in places, Batagaika’s cliff-faces keep growing while the crater below becomes deeper and wider.

Batagaika Crater has formed as rising temperatures have thawed the permafrost in Siberia. Warmer summers and shorter winters are causing the frozen layer cake of ice and soil to collapse (or “slump”) and erode away in much of the Arctic. Dozens of permafrost craters pock Russia’s northern landscape, but none rival the size of Batagaika, a so-called “megaslump” that has been devouring the slope above it and moving backwards into the hillside.

“There have been reports that these backwards-thawing features are appearing around the Arctic, but this one is in a league of its own,” said Mary Edwards, a professor at the University of Southampton who co-authored a 2017 study of the crater with Julian Murton of the University of Sussex. “Scientifically, it’s very interesting because we can see what’s underground.”

The site—the biggest permafrost crater in the world—holds clues to prehistoric life on Earth. Researchers believe the exposed ice and soil along the crater’s edges could hold up to 200,000 years of geological and biological history.

Batagaika has disgorged a handful of animals since it began growing, likely in the early 1980s. Equus lenensis (a Pleistocene horse) and Bison priscus (prehistoric steppe bison) have emerged from the thawing soil, as have assorted remains of cave lions and wolves. Researchers have found evidence that the region had a warmer climate and relatively dry, windy conditions during the Pleistocene Epoch. Spruce and pine forests once grew here, according to bits of wood found in the thawing soil.

Today, low shrubs and larch trees grow across this tundra landscape. From space, the gash of exposed soil appears rough-cut, brown against the green terrain. The steep hills inside the crater contain few plants, a sign of their recent formation. The natural-color image above was captured on June 7, 2016 by the Operational Land Imager (OLI) on the Landsat 8 satellite. The images below, taken by OLI (right) and the Enhanced Thematic Mapper Plus (ETM+) on Landsat 7 shows Batagaika’s rapid advance since 1999. [see past images at source]

Below the cliff face, steep hills and gullies drop to Batagaika’s floor. As more of the material at the bottom of the slope melts and comes loose, a larger face is exposed to the air, which in turn increases the speed of permafrost thawing. The crater will likely eat through the entire hillslope before it slows down, said Edwards.

“Every year as soon as temperatures go above freezing, it’s going to start happening again,” she said. “Once you’ve exposed something like this, it’s very hard to stop it.”

[references at source]
日期 acquired June 7, 2016
来源 https://earthobservatory.nasa.gov/IOTD/view.php?id=90104&src=eoa-iotd
作者 NASA Earth Observatory images by Jesse Allen, using Landsat data from the U.S. Geological Survey.
授权
(二次使用本文件)
Public domain 本文件完全由NASA创作,在美国属于公有领域。根据NASA的版权方针,NASA的材料除非另有声明否则不受版权保护。(参见Template:PD-USGov/zhNASA版权方针页面JPL图片使用方针。)
警告:

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

image/jpeg

5e563b8e7afc670caeb9611d6b80ebd90ad2733d

167,498 字节

480 像素

720 像素

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2017年5月5日 (五) 22:502017年5月5日 (五) 22:50版本的缩略图720 × 480(164 KB)Tillman{{Information |Description ={{en|1= The walls of this immense crater look as though they could have been scooped out of ice cream, but for the protruding ends of plant roots. And at more than 85 meters (275 feet) tall in places, Batagaika’s cliff...

以下2个页面使用本文件:

全域文件用途

以下其他wiki使用此文件:

元数据