上同调运算

维基百科,自由的百科全书

数学中,上同调运算自1950年代起称为代数拓扑,特别是同伦论的核心,其简单定义是:若F是定义上同调论函子,则上同调运算应是F到自身的自然变换。自始至终有两个基本点:

  1. 运算可用组合方法研究;
  2. 运算效果是产生有趣的双交换子理论。

这些研究来自庞特里亚金、波斯尼科夫、诺曼·斯廷罗德等人的研究,他们首次定义了模2系数情形下奇异上同调庞特里亚金平方波斯尼科夫平方斯廷罗德根运算。其中的组合方面是在上链层面上对自然对角映射失效的表述。运算的斯廷罗德代数的一般理论与对称群的一般理论密切相关。 亚当斯谱序列中,双交换子方面隐含在Ext函子、Hom函子的导出函子的使用中;若在斯廷罗德代数作用上存在双交换子性,也只是在导出的层面上。其趋同于稳定同伦论中的群,而关于稳定同伦论的信息却很难获得。这种联系使同伦论对上同调运算产生了浓厚兴趣,自此成为一个研究课题。非凡上同调论有自己的上同调运算,可能表现出更丰富的约束。

正式定义

上同调运算是定义在CW复形上的函子

自然变换

与艾伦伯格–麦克莱恩空间的关系

CW复形的上同调用艾伦伯格–麦克莱恩空间可表,因此由米田引理型上同调运算由同伦类映射给出。再次利用可表性,上同调运算由的一个元素给出。

表示AB的映射的同伦类集,

另见

参考文献