跳转到内容

調控回授網路

维基百科,自由的百科全书

調控回授網路(Regulatory feedback networks)是利用负反馈來進行推理的類神經網路[1]。回授不是為了最佳學習或是最佳訓練的權重,是用來找到節點的最佳活化方式(optimal activation of nodes)。此作法的效果類似無母數統計,但和最近鄰居法不同,調控回授網路在數學上已證明可以模擬前馈神经网络

網路的起源及應用

調控回授網路起源於解釋腦部認知的模型,包括在感官認知中常常會出現網絡範圍的簇狀發放英语bursting以及因相似造成的因難[2] 。此作法在數學上可等效分類為前饋法,用作創建及修改網路的工具[3][4]

相關條目

參考資料

  1. ^ Achler T., Omar C., Amir E., “Shedding Weights: More With Less”, IEEE Proc. International Joint Conference on Neural Networks, 2008
  2. ^ Tsvi Achler, Neural Phenomena Focus, 2016-02-08 [2016-08-29], (原始内容存档于2021-07-20) 
  3. ^ fernandez, ed. Two Duck-Rabbit Paradigm-Shift Anomalies in Physics and One (maybe) in Machine Learning. Medium. 2016-02-09 [2016-08-29]. (原始内容存档于2020-11-08). 
  4. ^ Tsvi Achler, Technical Video for Optimizing Mind, 2016-04-29 [2016-08-29], (原始内容存档于2021-07-21)