鱼嘴
鱼嘴(fish mouth)也称鱼颚或鱼颌(fish jaw),是构成鱼类的口腔的骨骼、软骨、肌肉和韧带等软组织的组合结构,是鱼类消化道和呼吸道的开端。绝大多数硬骨鱼有两套颌骨——主要的口颌(oral jaws)负责开合嘴部并吞咬食物,而位于咽部后方的咽颌(pharyngeal jaws)则负责咀嚼和吞咽食物[2][3]。软骨鱼类(比如鲨鱼和鳐鱼)只有由软骨组成的口颌。通常情况下,鱼类的颌骨由关节连接、垂直相对的上颌和下颌组成,并且可以拥有规则排列的牙齿。软骨鱼的口颌则会长出数套多次从内向外移动更换的牙齿。
鱼类的颌骨(特别是硬骨鱼)演化出了类似连杆机构的复杂结构,来适应水域生态系统中的各种竞争需求。比较明显的是能够迅速协调的将颌骨向前突出张开的平面四杆机构,使得鱼嘴可以迅速扩大口腔体积并产生负压将猎物吸入口中。鱼类的前上颌骨也配有这种结构[4],使得整个鱼嘴拥有三套四杆机构可以前后、上下、左右的口腔直径都产生扩大[4][5][6]。
演化
鱼嘴的颌骨结构可能来源于支撑无颌鱼类鳃部的咽弓(pharyngeal arches)。最早的鱼颌出现在约4亿3000万年前的志留纪的(已灭绝的)盾皮鱼[8]和棘鱼之中[9]。拥有可积极开合的颚部最初的选择优势可能并不与进食有关,而是增加呼吸效率——颚部开合产生的“颊泵”(buccal pump)效应可以让更多的新鲜水在单位时间内流过鱼鳃以便增加纳氧量。用开合颌骨进行吞咬很可能只是一个连带产生的副功能,但随后变成了许多从早期鱼类演化出的脊椎动物的主要生存技能,被一些演化生物学家誉为“脊椎动物历史上最深刻并最激进的演化步伐”[10][11]和“至关重要的创新”[12]。相比之下,无颌鱼类的生存难度更高,因此大部分都在三叠纪灭绝没能存活至今,对少数存活至今的圆口纲鱼类(盲鳗和七鳃鳗)的研究也没能帮助解释早期颌骨的演化对脊椎动物头骨深层重塑的影响[13][14]。
通常的看法是脊椎动物的颌骨与鱼类的鳃弓(branchial arch或gill arches)同源[15],都来自于胚胎阶段发展出的咽弓。无颌鱼的鳃裂开口在嘴后方,由软骨组织支撑,而第一组鳃弓则环绕嘴口。这第一组鳃弓在有颌鱼中发生对折弯曲变成了上下颌;第二鳃弓的上部在则变成了负责将颌骨和颅骨连接的舌颌骨(hyomandibula)[16],在真骨鱼中还负责悬挂鳃盖(operculum)[17]。现在被普遍接受的看法是有颌鱼类的祖先是身上有骨质的甲板覆盖、无颌的甲胄鱼[18][19]。
另见
参考
- ^ 1.0 1.1 Fraser, G. J.; Hulsey, C. D.; Bloomquist, R. F.; Uyesugi, K.; Manley, N. R.; Streelman, J. T. An ancient gene network is co-opted for teeth on old and new jaws. PLOS Biology. 2009, 7 (2): e1000031. PMC 2637924 . PMID 19215146. doi:10.1371/journal.pbio.1000031.
- ^ Mabuchi, K.; Miya, M.; Azuma, Y.; Nishida, M. Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evolutionary Biology. 2007, 7 (1): 10. PMC 1797158 . PMID 17263894. doi:10.1186/1471-2148-7-10.
- ^ Alfaro, M. E.; Brock, C. D.; Banbury, B. L.; Wainwright, P. C. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?. BMC Evolutionary Biology. 2009, 9 (1): 255. PMC 2779191 . PMID 19849854. doi:10.1186/1471-2148-9-255.
- ^ 4.0 4.1 Westneat, Mark W. Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four-bar linkage models. Journal of Morphology. September 1990, 205 (3): 269–295. PMID 29865760. S2CID 46933606. doi:10.1002/jmor.1052050304.
- ^ Olsen, Aaron M.; Camp, Ariel L.; Brainerd, Elizabeth L. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom. Journal of Experimental Biology. 15 December 2017, 220 (24): 4612–4623. PMID 29237766. doi:10.1242/jeb.159079 .
- ^ Muller, M. A novel classification of planar four-bar linkages and its application to the mechanical analysis of animal systems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 29 May 1996, 351 (1340): 689–720. Bibcode:1996RSPTB.351..689M. PMID 8927640. doi:10.1098/rstb.1996.0065.
- ^ Benton 2005.
- ^ Placodermi: Overview. Palaeos. [10 December 2014]. (原始内容存档于2022-06-28).
- ^ Acanthodii. Palaeos. [10 December 2014]. (原始内容存档于2022-06-28).
- ^ Gai, Z.; Zhu, M. The origin of the vertebrate jaw: Intersection between developmental biology-based model and fossil evidence. Chinese Science Bulletin. 2012, 57 (30): 3819–3828. Bibcode:2012ChSBu..57.3819G. doi:10.1007/s11434-012-5372-z .
- ^ Maisey, J. G. Discovering Fossil Fishes. Westview Press. 2000: 1–223 [2023-01-06]. ISBN 978-0-8133-3807-1. (原始内容存档于2022-06-30).
- ^ Kimmel, C. B.; Miller, C. T.; Keynes, R. J. Neural crest patterning and the evolution of the jaw. Journal of Anatomy. 2001, 199 (1&2): 105–119. PMC 1594948 . PMID 11523812. doi:10.1017/S0021878201008068.
- ^ Janvier, P. Homologies and Evolutionary Transitions in Early Vertebrate History. Anderson, J. S.; Sues, H.-D. (编). Major Transitions in Vertebrate Evolution. Indiana University Press. 2007: 57–121 [2023-01-06]. ISBN 978-0-253-34926-2. (原始内容存档于2022-06-29).
- ^ Khonsari, R. H.; Li, B.; Vernier, P.; Northcutt, R. G.; Janvier, P. Agnathan brain anatomy and craniate phylogeny. Acta Zoologica. 2009, 90 (s1): 52–68. S2CID 56425436. doi:10.1111/j.1463-6395.2008.00388.x.
- ^ For example: (1) both sets of bones are made from neural crest cells (rather than mesodermal tissue like most other bones); (2) both structures form the upper and lower bars that bend forward and are hinged in the middle; and (3) the musculature of the jaw seem homologous to the gill arches of jawless fishes. (Gilbert 2000)
- ^ Gilbert. Evolutionary Embryology. 2000 [2022-06-27]. (原始内容存档于2021-09-07).
- ^ Clack, J. A. Earliest known tetrapod braincase and the evolution of the stapes and fenestra ovalis. Nature. 1994, 369 (6479): 392–394. Bibcode:1994Natur.369..392C. S2CID 33913758. doi:10.1038/369392a0.
- ^ Donoghue, P. C.; Purnell, M. A. Genome duplication, extinction and vertebrate evolution. Trends in Ecology & Evolution. 2005, 20 (6): 312–319. PMID 16701387. doi:10.1016/j.tree.2005.04.008.
- ^ Forey, P. L.; Janvier, P. Agnathans and the origin of jawed vertebrates. Nature. 1993, 361 (6408): 129–134. Bibcode:1993Natur.361..129F. S2CID 43389789. doi:10.1038/361129a0.
额外阅读
- Benton, Michael J. Vertebrate Palaeontology 3rd. John Wiley & Sons. 2009. ISBN 978-1-4051-4449-0.
- Botella, H.; Blom, H.; Dorka, M.; Ahlberg, P. E.; Janvier, P. Jaws and teeth of the earliest bony fishes. Nature. 2007, 448 (7153): 583–586. Bibcode:2007Natur.448..583B. PMID 17671501. S2CID 4337868. doi:10.1038/nature05989.
- Compagnucci, C; Debiais-Thibaud, M; Coolen, M; Fish, J; Griffin, J N; Bertocchini, F; Minoux, M; Rijli, F M; Borday-Birraux, V; Casane, D; Mazanc, S; Depew, M J. Pattern and polarity in the development and evolution of the gnathostome jaw: Both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Developmental Biology. 2013, 377 (2): 428–448. PMID 23473983. doi:10.1016/j.ydbio.2013.02.022 .
- Depew, M J; Lufkin, T; Rubenstein, J L. Specification of jaw subdivisions by Dlx genes. Science. 2002, 298 (5592): 381–385. PMID 12193642. S2CID 10274300. doi:10.1126/science.1075703.
- Forey, Peter; Janvier, Philippe. Agnathans and the origin of jawed vertebrates. Gee, Henry (编). Shaking the tree: readings from Nature in the history of life. USA: University of Chicago Press; Nature/Macmillan Magazines. 2000: 251–266 [2023-01-06]. ISBN 978-0-226-28497-2. (原始内容存档于2022-06-30).
- Gilbert, Scott F. The anatomical tradition: Evolutionary Embryology: Embryonic homologies. Developmental Biology. Sunderland (MA): Sinauer Associates, Inc. (NCBI). 2000 [2018-04-09]. (3rd and 4th paras, One of the most celebrated cases...)
- Hulsey, CD; Fraser, GJ; Streelman, JT. Evolution and development of complex biomechanical systems: 300 million years of fish jaws. Zebrafish. 2005, 2 (4): 243–257. CiteSeerX 10.1.1.210.7203 . PMID 18248183. doi:10.1089/zeb.2005.2.243.
- Koentges, G; Matsuoka, T. Jaws of the fates. Science. 2002, 298 (5592): 371–373. PMID 12376690. S2CID 20212436. doi:10.1126/science.1077706.
- Lingham-Soliar, Theagarten. The First Vertebrates, Jawless Fishes, the Agnathans. The Vertebrate Integument Volume 1. 2014: 11–31. ISBN 978-3-642-53747-9. doi:10.1007/978-3-642-53748-6_2.
- Lingham-Soliar, T. The Earliest Jawed Vertebrates, the Gnathostomes. The Vertebrate Integument 1. Springer. 2014: 33–58 [2022-06-27]. ISBN 978-3-642-53748-6. (原始内容存档于2022-06-30).
- Mallatt, J. The origin of the vertebrate jaw: Neoclassical ideas versus newer, development-based ideas. Zoological Science. 2008, 25 (10): 990–998. PMID 19267635. S2CID 3104126. doi:10.2108/zsj.25.990.
- Mehta, Rita S.; Wainwright, Peter C. Functional morphology of the pharyngeal jaw apparatus in moray eels. Journal of Morphology. May 2008, 269 (5): 604–619. PMID 18196573. S2CID 17013964. doi:10.1002/jmor.10612.
- Muschick, M.; Salzburger, W. Pharyngeal jaws and their evolutionary, ecological and behavioural significance (PDF). Muschick, Moritz (编). Convergence and plasticity in the adaptive radiation of cichlid fishes (PhD论文). University of Basel: 13–37. 2013 [2022-06-27]. (原始内容存档 (PDF)于2022-07-07).
- Oisi, Y; Ota, K G; Kuraku, S; Fujimoto, S; Kuratani, S. Craniofacial development of hagfishes and the evolution of vertebrates. Nature. 2013, 493 (7431): 175–180. Bibcode:2013Natur.493..175O. PMID 23254938. S2CID 4403344. doi:10.1038/nature11794.
- Romer, Alfred Sherwood; Parsons, Thomas S. The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. 1977. ISBN 978-0-03-910284-5.
- Soukup, V; Horácek, I; Cerny, R. Development and evolution of the vertebrate primary mouth. Journal of Anatomy. 2013, 222 (1): 79–99. PMC 3552417 . PMID 22804777. doi:10.1111/j.1469-7580.2012.01540.x.
- Wainwright, P. C. Functional Morphology of the Pharyngeal Jaw Apparatus. Shadwick, R. E.; Lauder, G. V. (编). Fish Biomechanics. Fish Physiology 23. Academic Press. 2006: 77–102 [2023-01-06]. ISBN 978-0-08-047776-3. (原始内容存档于2022-06-28). Full view (页面存档备份,存于互联网档案馆)
- Westneat, M. W. Skull Biomechanics and Suction Feeding in Fishes. Shadwick, R. E.; Lauder, G. V. (编). Fish Biomechanics. Fish Physiology 23. Academic Press. 2006: 29–76. ISBN 978-0-08-047776-3.
- Westneat, Mark W. Evolution of levers and linkages in the feeding mechanisms of fishes. Integrative and Comparative Biology. 2004, 44 (5): 378–389. PMID 21676723. doi:10.1093/icb/44.5.378 .
外部链接
外部视频链接 | |
---|---|
Video of a slingjaw wrasse catching prey by protruding its jaw | |
Video of a red bay snook catching prey by suction feeding |
- Moray Eels Are Uniquely Equipped to Pack Big Prey Into Their Narrow Bodies (新闻稿). National Science Foundation. September 5, 2007 [2022-06-27]. (原始内容存档于2017-10-06).
- Myers, PZ. Evolution of the jaw. Pharyngula. 13 March 2007 [2022-06-27]. (原始内容存档于2021-05-09).
- Barford, Eliot. Ancient fish face shows roots of modern jaw. News. Nature. 25 September 2013 [2022-06-27]. (原始内容存档于2013-10-31).
- Zhu, Min; Yu, Xiaobo; Erik Ahlberg, Per; Choo, Brian; Lu, Jing; Qiao, Tuo; Qu, Qingming; Zhao, Wenjin; Jia, Liantao; Blom, Henning; Zhu, You’an. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature. 2013, 502 (7470): 188–193. Bibcode:2013Natur.502..188Z. PMID 24067611. S2CID 4462506. doi:10.1038/nature12617.