跳转到内容

Fetch-and-add

维基百科,自由的百科全书

fetch-and-addCPU指令(FAA),对内存位置执行增加一个数量的原子操作。具体内容为:

x 变为x + a,其中x是个内存位置,a是个值

FAA可用于实现互斥锁信号量

1991年,Maurice Herlihy英语Maurice Herlihy证明fetch-and-add具有一个有限的consensus英语Consensus (computer science)数,能解决不超过两个并发进程的无等待consensus问题。[1]

用途

下述伪代码用ticket lock算法实现了互斥锁:

 record locktype {
    int ticketnumber
    int turn
 }
 procedure LockInit( locktype* lock ) {
    lock.ticketnumber := 0
    lock.turn := 0
 }
 procedure Lock( locktype* lock ) {
    int myturn := FetchAndIncrement( &lock.ticketnumber ) //must be atomic, since many threads might ask for a lock at the same time
    while lock.turn ≠ myturn 
        skip // spin until lock is acquired
 }
 procedure UnLock( locktype* lock ) {
    FetchAndIncrement( &lock.turn ) //this need not be atomic, since only the possessor of the lock will execute this
 }

硬件软件支持

C++11标准定义了原子的fetch_add函数。[2] GCC把它作为对C语言的扩展。[3]

x86实现

8086起,以内存为目的操作数的ADD指令就是fetch-and-add。如果使用LOCK前缀,那么它对多处理器是原子操作。但不能返回原值,直至486引入XADD指令。

    void __fastcall atomic_inc (volatile int* pNum)
    {
        __asm
        {
            lock inc dword ptr [ECX]
            ret
        }
    }

下述GCC编译的C语言函数,在x86的32位与64位平台上,使用扩展asm语法:

  static inline int fetch_and_add(int* variable, int value)
  {
      __asm__ volatile("lock; xaddl %0, %1"
        : "+r" (value), "+m" (*variable) // input+output
        : // No input-only
        : "memory"
      );
      return value;
  }

参见

参考文献

  1. ^ Herlihy, Maurice. Wait-free synchronization (PDF). ACM Trans. Program. Lang. Syst. January 1991, 13 (1): 124–149 [2007-05-20]. doi:10.1145/114005.102808. (原始内容存档 (PDF)于2011-06-05). 
  2. ^ std::atomic::fetch_add. cppreference.com. [1 June 2015]. (原始内容存档于2017-11-23). 
  3. ^ Atomic Builtins. Using the GNU Compiler Collection (GCC). Free Software Foundation. 2005 [2017-11-22]. (原始内容存档于2017-11-08).