跳转到内容

四阶魔方

本页使用了标题或全文手工转换
维基百科,自由的百科全书
四阶魔方
打乱的四阶魔方
转动中的四阶魔方

四阶扭计骰英语:Rubik's Revenge),为4×4×4的立方体结构。发明人为彼得·塞波斯坦尼(Peter Sebesteny),四阶魔方起初称作为Sebesteny魔方,后来在生产前最终定名为“Rubik's Revenge”来吸引魔方爱好者,因为这个名字在英语中有复仇的意思。

三阶魔方不同的是,四阶魔方没有每面不动的中心方块,所以四阶魔方的复原方法与众不同,要先复原中心块和成对的边块形成一个大号的三阶魔方,再用原来的方法复原。

一家名叫东贤(East Sheen)的公司发明了一种新的复原方法:使用三阶魔方的方法先复原边块和角块,再复原中心块

发展历史

1974年,鲁比克教授发明了第一个魔方,即3×3×3立方体结构的“三阶魔方”(当时称作Magic Cube),并在1975年获得匈牙利专利号HU170062,但没有申请国际专利。第一批三阶魔方于1977年在布达佩斯的玩具店贩售[1]。与Nichols的魔方不同,鲁比克教授的零件是像卡榫一般互相咬合在一起,不容易因为外力而分开,而且可以以任何材质制作。

1979年九月,Ideal Toys公司将魔方带至全世界,并于1980年一、二月在伦敦巴黎美国的国际玩具博览会亮相。

展出之后,Ideal Toys公司将魔方的名称改为Rubik's Cube,1980年五月,第一批魔方在匈牙利出口[1]

魔方广为大众喜爱是在1980年代。从1980年到1982年,总共售出了将近200万个魔方。据估计,1980年代中期,全世界有五分之一的人在玩魔术方块[2]

由于魔方的巨大商机,1983年鲁比克教授和他的合伙人一同开发了二阶四阶魔方[3]。并于1986年制造了五阶魔方[4]

变化数

四阶魔方总共有8个角块,24个边块和24个中心块。

其角块的变换状态和二阶魔方相同,所以总共有8!×37种变化状态。

每种颜色的四个中心块可以不区别位置,所以总共有24!/(4!6)种变化状态。

24个边块不能进行随意换位,而每一组颜色相同的两块边块是有区别的,因为边块关系到两个面的颜色。所以边块的变化总数总共有24!种。

由于在空间变幻中状态相同而颜色不同的状态会被重复计算,所以真正的状态数还应该除以24。

所以四阶魔方的总状态数为

即7,401,196,841,564,901,869,874,093,974,498,574,336,000,000,000种变化。

机械结构

四阶魔方的零件〈第一种〉
四阶魔方的零件〈第二种〉

四阶魔术方块总共有8个角块,24个边块和24个中心块,,它的构成分为两类:

第一类中心是一个球体,每个周边的小块连接着中心球的滑轨,在运动时候会沿着用力方向在滑轨上滑动。
第二类是以轴为核心的四阶魔术方块,这类魔术方块的构成非常复杂,除了中心球和周边块外还有很多附加件。

作为竞速运动来说第二种构成的四阶魔术方块运动速度快,不易在高速转动中卡住。

复原方法

术语

  • U:上层
  • MU:上数第3
  • D:下层
  • MD:下数第二层
  • L:左侧层
  • ML:左数第二层
  • R:右侧层
  • MR:右数第二层
  • F:前层
  • MF:前数第二层
  • B:后层
  • MB:后数第二层

降阶法

降阶法即是将四阶魔方“降阶”为三阶魔方,随后按三阶魔方进行还原。

第一阶段 第二阶段 第三阶段 第四阶段
还原中心块。
将四阶魔方中央四个小中心块颜色对齐,将其当做三阶魔方的中心块。
合并棱边。
将四阶魔方每条棱边上的两个棱块颜色对齐,将其当做三阶魔方的棱块。
按三阶魔方还原。
此时,已完成“降阶”动作,随后按三阶魔方进行还原。
特殊情况校正。
因为四阶魔方的中心块位置不是相对固定的,所以“降阶”后的“三阶魔方”会出现两类“特殊情况”,需要进行校正,此后继续按三阶魔方还原。

参考文献

  1. ^ 1.0 1.1 http://www.rubiks.com/World/Rubiks%20history.aspx. [2017-05-12]. (原始内容存档于2017-06-08).  外部链接存在于|title= (帮助)
  2. ^ http://www.rubiks.com/World/Cube%20facts.aspx. [2017-05-12]. (原始内容存档于2016-09-19).  外部链接存在于|title= (帮助)
  3. ^ 二阶魔术方块美国专利第4,378,117号,四阶魔术方块美国专利第4,421,311号
  4. ^ 五阶魔术方块美国专利第4,600,199号

外部链接