跳转到内容

样本空间

本页使用了标题或全文手工转换
维基百科,自由的百科全书

概率论中,样本空间是一个实验随机试验所有可能结果的集合,而随机试验中的每个可能结果称为样本点。通常用表示。例如,如果抛掷一枚硬币,那么样本空间就是集合{正面,反面}。如果投掷一个骰子,一个面朝上,那么样本空间就是[1]

有些实验有两个或多个可能的样本空间。例如,从没有鬼牌的52张扑克牌中随机抽出一张,一个可能的样本空间是数字(A到K)(包括13个元素),另外一个可能的样本空间是花色(黑桃,红桃,梅花,方块)(包括4个元素)。如果要完整地描述一张牌,就需要同时给出数字和花色,这时的样本空间可以通过构建上述两个样本空间的笛卡儿乘积来得到。

在初等概率中,样本空间的任何一个子集都被称为一个事件。如果一个子集只有一个元素,那这个子集被称为基本事件英语Elementary_event。但当样本空间大小是无限的时候,这个定义就不可行,因此要给出一个更准确的定义。只有可测子集才称为事件,这些可测子集且要构成样本空间上的σ-代数。然而这样定义的重要性只是从理论上而言的,因为σ-代数在实际应用上可以定义为所有集的集合。

样本空间里可以进行加法运算,可以进行数乘(除)运算。 可以求平均值。

另见

参考文献

  1. ^ Larsen, R. J.; Marx, M. L. An Introduction to Mathematical Statistics and Its Applications 3rd. Upper Saddle River, NJ: Prentice Hall. 2001: 22. ISBN 9780139223037.