鞅中心極限定理
鞅中心極限定理是概率論中的一個定理,對有界的隨機變量而言,常見的經典中心極限定理是它的特殊情形。經典中心極限定理說,在一定條件下,獨立同分布(i.i.d.)的隨機變量之和,乘以適當的標準化因數後,會依分布收斂於標準正態分布 。而鞅中心極限定理將獨立性假設放寬為:這些隨機變量只需構成一個鞅中的隨機增量(鞅是一種隨機過程 ,其從時間 到時間 的增量,在給定時間 1 到 觀測值的條件下,其條件數學期望為零)。
定理內容
鞅中心極限定理的基本內容可陳述如下:令隨機變量 構成一個鞅,即滿足條件:
- (鞅的定義)
進一步假設這個鞅是有限增量的,即:存在一個固定常數 ,有:
對所有 成立。 另假設 也成立。 定義增量的條件方差為:
並假設所有條件方差之和發散,即下式以概率1成立:
據此,對任意給定的常數 ,可以定義:
在所有上述假設成立的條件下,鞅中心極限定理做出如下結論:標準化的鞅隨機變量:
隨機增量的條件方差之和必須發散
上述定理假設了所有隨機增量的條件方差之和為無窮大,即以下條件以概率1成立:
這樣可以確保以概率1,下式成立:
並不是所有鞅都滿足這個條件,例如恆為零的平凡鞅。
定理的直觀理解
可以通過將 如下變形來更好地理解鞅中心極限定理:
右邊的第一項漸近收斂於零,可以忽略。第二項在形式上,與獨立同分布隨機增量的經典中心極限定理相似,雖然其中被求和項 互相之間未必獨立,但由鞅的定義易知它們互不相關的,因為:
參考文獻
- Hall, Peter; C. C. Heyde. Martingale Limit Theory and Its Application. New York: Academic Press. 1980. ISBN 0-12-319350-8. Hall, Peter; C. C. Heyde. Martingale Limit Theory and Its Application. New York: Academic Press. 1980. ISBN 0-12-319350-8. Hall, Peter; C. C. Heyde. Martingale Limit Theory and Its Application. New York: Academic Press. 1980. ISBN 0-12-319350-8.
- 有關定理5.4的討論以及推論5.3(ii)的正確形式,請參見Bradley, Richard. On some results of MI Gordin: a clarification of a misunderstanding. Journal of Theoretical Probability (Springer). 1988, 1 (2): 115–119. doi:10.1007/BF01046930.