頻率調制
此條目需要精通或熟悉相關主題的編者參與及協助編輯。 (2015年12月14日) |
調制方式 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
連續調制 | |||||||||||||||
| |||||||||||||||
脈衝調制 | |||||||||||||||
類比 | PAM · PDM · PPM | ||||||||||||||
數位 | PCM · PWM | ||||||||||||||
展頻 | |||||||||||||||
CSS · DSSS · THSS · FHSS | |||||||||||||||
另見 | |||||||||||||||
調制 · 線路碼 · 調制解調器 · ΔΣ調制 · OFDM · FDM | |||||||||||||||
調頻(英語:Frequency Modulation,縮寫:FM)是一種以載波的瞬時頻率變化來表示資訊的調制方式。(與此相對應的調幅方式是透過載波振幅的變化來表示資訊,而其頻率卻保持不變。)在模擬應用中,載波的頻率跟隨輸入訊號的振幅直接成等比例變化。在數碼應用領域,載波的頻率則根據數據序列的值作離散跳變,即所謂的頻率鍵控(FSK)。
調頻技術通常運用在甚高頻段(VHF無線電波段)上的高傳真音樂和語音的無線電廣播。普通的(模擬)電視的音訊訊號也是透過調頻方式傳遞。窄帶形式的調頻廣播(N-FM)限於商業上的聲音通訊和業餘無線電領域,廣播中使用的調頻技術則一般稱為寬帶調頻(W-FM)。
調頻技術還用於大多數的模擬VCR,包括家庭視像系統VHS,用於記錄視像訊號的亮度(黑和白)資訊,不過是在中頻段使用。調頻是用於錄取視像磁帶時唯一不造成大的訊號走樣的調制技術,因為視像資訊的所包含的頻譜範圍很廣,從幾個赫茲到幾十兆赫,同均衡器工作時很難將雜訊資訊保持在-60分貝以下。調頻方式也使磁帶處於飽和狀態,起到降噪的作用,同時接收端的調頻捕獲效應基本消除了透印和前回聲等現象。如果在訊號上加上一個連續的導頻音,就像在V2000以及許多Hi-band 格式上作的那樣,機械抖動可以得到有效的控制,從而有助於時基校正。
調頻技術還應用在音訊的合成上,即所謂的調頻合成,在早期的數碼合成器上應用很普遍,並成為幾代個人電腦聲卡的標準特徵。
理論
若欲傳送訊號(即基帶)為 而正弦載波為 ,其中 fc 為載波的基頻,Ac 是載波的振幅,調制器將基帶數據訊號與載波結合起來得到了傳輸訊號:
公式中, 是振盪器的瞬時頻率, 是頻偏,代表在一個方向上相對 fc 的最大頻率偏移,在此我們假定 xm(t) 的幅值限於 ±1 之間。
雖然訊號的大部分能量都包含在 fc ± fΔ 中,但可以通過傅里葉分析證明要精確表示一個FM訊號需要更寬的頻率範圍。實際FM訊號的頻率譜具有無限延伸的分量,但它們的振幅會減小,在實際設計問題中也常忽略高階分量。[1]
正弦基帶訊號
數學上,基帶調制的訊號可以通過用頻率 fm 正弦等幅波訊號來近似。這種方法也被稱為單音調制。這樣一個訊號的積分是:
在這種情況下,y(t) 的表達式可以簡化為:
其中調制正弦曲線的振幅 通過峰值偏差 來表示(參見頻率偏移)。
正弦訊號調制的正弦波載波的諧波分佈可以表示與貝索函數;這是在頻域中頻率調制的數學理解的基礎。
調制指數
如其他調制系統一樣,調制指數表示調制變量在未調制水平附近變化的範圍。它與載波頻率的變化有關:
其中 是調制訊號 xm(t) 中出現的最高頻率分量,而 是峰值頻偏—即瞬時頻率相對於載波頻率的最大偏差。對於正弦波調制,調制指數被視為載波頻率的峰值頻偏與調制正弦波的頻率之比。
若 ,則該調制稱為窄帶調頻,而其帶寬約為 。有時調制指數 h<0.3 rad 被認為是窄帶調頻,否則是寬帶調頻。
對於數碼調制系統,例如在二進制頻移鍵控(BFSK)中,用二進制訊號來調制載波,調制指數為:
其中 是符號周期,而按照慣例 用作調制二進制波形的最高頻率,儘管更準確地來說,它是調制二進制波形最高的基波。在數碼調制的情況下,載波 不會被傳輸。不過,根據調制訊號的二元狀態是0或1,會傳輸 或 。
卡森法則
一個經驗法則,卡森法則指出幾乎所有(~98%)的調頻訊號的功率處於帶寬 內:
其中 是從中心載波頻率 到瞬時頻率 的峰值偏差,而 為調制訊號中的最高頻率。 卡森規則的應用條件僅僅是正弦訊號。
無線電中的應用
Edwin Armstrong於1935年11月6日在無線電工程師學會紐約分部發表了一篇名為《一個通過頻率調制系統降低無線電訊號干擾的方法》 (頁面存檔備份,存於互聯網檔案館)的文章,第一次描述了調頻無線電。
寬帶調頻(W-FM)和調幅相比,在同樣的調制訊號作用下,寬帶調頻需要更寬的帶寬。但是這也使訊號具有更強的抗雜訊和干擾能力。調頻還具有較強的抗簡單訊號振幅衰減能力(simple signal amplitude fading phenomena)。因此,調頻被選做高頻、高傳真無線電傳輸的調制標準。
調頻接收機固有的一個現象叫做「捕獲」,即調諧器能夠清晰地接收到兩個同頻率廣播電台中的較強者。然而,隨之而來的問題是:頻率漂移或選擇性差可能會導致一個電台或訊號突然被另一個毗鄰頻道的壓制。頻率漂移只是對非常老式的或廉價的接收機來說是個問題,而選擇性差則可能給所有調諧器都帶來了困擾。
調頻訊號也能用於搭載立體聲訊號,參見調頻立體聲。然而,這是在頻率調制過程之前和之後,通過使用多路復用技術和去多路復用技術來完成的,而不是作為頻率調制過程的一部分。本文餘下的部分將忽略調頻立體聲中使用的立體聲多路復用和去多路復用過程,而是集中在調頻調制和解調過程,這對立體聲和單聲道處理過程都是一樣的。
實現
調制
可以使用直接或間接的頻率調制產生調頻訊號:
- 直接調頻調制可以通過直接將訊號反饋到一個壓控振盪器的輸入實現。
- 對於間接調頻調制,消息訊號首先積分生成調相訊號。這用於調制晶控振盪器,得到的訊號通過倍頻器產生FM訊號。在這種調制中,生成的是窄帶FM訊號,隨後再產生寬帶FM訊號,因此稱為間接調頻調制。[2]
解調
有很多種調頻波解調電路。恢復原調制訊號的常用方法是通過浮士特-席利鑒頻器。鎖相環可以用作調頻訊號解調器。斜率檢測通過諧振頻率略微偏離載波的調諧電路解調FM訊號。隨着頻率的上升和下降,調諧電路會提供振幅變化的響應,將FM轉變為AM。AM接收機通過這種方式可以監測到一些FM傳輸,儘管它不能有效地解調FM廣播。
參見
參考文獻
- ^ T.G. Thomas, S. C. Sekhar Communication Theory, Tata-McGraw Hill 2005, ISBN 0-07-059091-5 page 136
- ^ "Communication Systems" 4th Ed, Simon Haykin, 2001
延伸閱讀
- A. Bruce Carlson. Communication Systems, 4th edition. McGraw-Hill Science/Engineering/Math. 2001. ISBN 0-07-011127-8, ISBN 978-0-07-011127-1.
- Gary L. Frost. Early FM Radio: Incremental Technology in Twentieth-Century America. Baltimore: Johns Hopkins University Press, 2010. ISBN 0-8018-9440-9, ISBN 978-0-8018-9440-4.
- Ken Seymour, AT&T Wireless (Mobility). Frequency Modulation, The Electronics Handbook, pp 1188-1200, 1st Edition, 1996. 2nd Edition, 2005 CRC Press, Inc., ISBN 0-8493-8345-5 (1st Edition).