锡化物
锡化物是指含锡阴离子的金属间化合物,在有机化学上也指含有机锡阴离子的化合物。[1]
碱金属和碱土金属的二元锡化物
当锡和碱金属或碱土金属化合,其中一部分形成离子化合物,含单原子或多原子的锡阴离子(Zintl离子),如Mg2Sn中的Sn4−、[2]K4Sn9中的Sn94−等。[3] 即便是这些金属,并不是所有形成的化合物都可以被认为是具有局部键合的离子的,如金属间化合物Sr3Sn5包含着{Sn5}四方锥单元。[4]
碱金属和碱土金属的三元锡化物
三元锡化物,如LiRh3Sn5[5]和MgRuSn4 [6],包含着碱金属(碱土金属)、过渡金属和锡三种元素的化合物也得到了研究。
其它金属的锡化物
二元和三元的金属间锡化物也都是已知的。 锡化铌(化学式:Nb3Sn)是最注明的金属间锡化物超导体,它更常被称作“niobium-tin(铌锡)”。
多锡化物(Snxy−)
一些锡的Zintl离子在下文列出。它们有的含有二中心二电子键(2c-2e),有的则是缺电子的,其成键有时可用多面体骨架电子对理论(Wade规则)来计算:由每个锡原子贡献的价电子数等于2(不计s电子)。[7]有一些硅化物和铅化物也有着相似的结构,如四面体的Si44−、链状的(Si2−)n、Pb44−和Pb94−。[2][8]
- Sn4−,存在于Mg2Sn中。[2]
- Sn44−,四面体,有2c-2e键,存在于CsSn中。[2]
- Sn42−,四面体,10电子(2n+2)的closo-簇合物。[9]
- (Sn2−)n,有着2c-2e键的zig-zag chain polymeric anion,存在于BaSn中。[2]
- Sn52−,closo-簇合物,12电子(2n+2)(三角双锥体),存在于(2,2,2-crypt-Na)2Sn5中。[10]
- (Sn84−)n,聚合的2D阴离子,存在于NaSn2中。[11]
- Sn94−,根据多面体骨架电子对理论,22电子(2n+4)的nido-簇合物(capped square antiprismatic),存在于金属间化合物K4Sn9中;[3]以扭曲的离子存在于Na4Sn9·7en(en=乙二胺)中。[12]
- Sn93−,有顺磁性,21电子,closo-簇合物阴离子( D3h symmetry) (比根据多面体骨架电子对理论预测的20个电子(2n+2)多出了1个)。[13]
- (Sn127−)n,聚合的2D阴离子,存在于Na7Sn12中。[14]
参考文献
- ^ Flacke, F.; Jacobs, H. [Li(NH3)4] [Sn(SnPh3)3].C6H6, Crystal structure of a stannide with trigonal pyramidal tin skeleton. European journal of solid state and inorganic chemistry. 1997, 34 (5): 495–501.
- ^ 2.0 2.1 2.2 2.3 2.4 S.M. Kauzlarich,(1994), Zintl Compounds, Encyclopedia of Inorganic Chemistry, John Wiley & sons, ISBN 0-471-93620-0
- ^ 3.0 3.1 Hoch, C.; Wendorff, M.; Röhr, C. Tetrapotassium nonastannide, K4Sn9. Acta Crystallogr C. 2002, 58 (4): i45–i46. doi:10.1107/S0108270102002032.
- ^ Klem, M. T.; Vaughey, J. T.; Harp, J G.; Corbett, J D. A3Tt5 Phases Sr3Sn5, Ba3Pb5, and La3Sn5. Structure and Bonding in a Series of Isotypic Metallic Compounds with Increased Electron Count and Their Comparison with the Nominal Zintl Phase La3In5. Inorg. Chem. 2001, 40 (27): 7020–7026. doi:10.1021/ic010804v.
- ^ Sreeraj, P; Johrendt, D.; Müller, H.; Hoffmann, R-D; Wu, Zhiyun; Pöttgen, R. The stannide LiRh3Sn5 : Synthesis, structure, and chemical bonding. Zeitschrift für Naturforschung B. 2005, 60 (9): 933–939.
- ^ Schlüter, M.; Kunst, A.; Pöttgen, R. The Ternary Stannides MgRuSn4 and MgxRh3Sn7 - x (x = 0.98 - 1.55). Zeitschrift für anorganische und allgemeine Chemie: 2641–2646. doi:10.1002/1521-3749(200211)628:12<2641::AID-ZAAC2641>3.0.CO;2-0.
- ^ Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements 2nd. Oxford:Butterworth-Heinemann. 1997. ISBN 0-7506-3365-4.
- ^ Yong, Li; Stephan D. Hoffmann; Thomas F. Fässler. A low-dimensional arrangement of [Pb9]4− clusters in [K(18-crown-6)]2K2Pb9·(en)1.5. Inorganica Chimica Acta (Elsevier). 1 December 2006, 359 (15): 4774–4778. doi:10.1016/j.ica.2006.04.017.
- ^ Critchlow, S C.; Corbett, J. D. Stable homopolyatomic anions: the tetrastannide (2–) and tetragermanide(2–) anions, Sn42−and Ge42− X-ray crystal structure of [K+(crypt)]2Sn42−. ethylenediamine. J. Chem. Soc., Chem. Commun: 236–237. doi:10.1039/C39810000236.
- ^ Edwards, P. A.; Corbett, J. D. Stable homopolyatomic anions. Synthesis and crystal structures of salts containing the pentaplumbide(2-) and pentastannide(2-) anions. Inorg. Chem. 1977, 16 (4): 903–907. doi:10.1021/ic50170a036.
- ^ Dubois, F.; Schreyer, M.; Fässler, T. F. NaSn2: A Novel Binary Zintl Phase with 2D Polyanions of Realgar-Type Units [Sn8]4−. Inorg. Chem. 2005, 44 (3): 477–479. doi:10.1021/ic048770p.
- ^ Diehl, L.; Khodadadeh, K.; Kummer, D.; Strähle, J. Anorganische Polyederverbindungen, III. Zintl's Polyanionige Salze : Darstellung und Eigenschaften der kristallinen Verbindungen [Na4·7 en]Sn9, [Na4·5 en]Ge9 und [Na3·4 en]Sb7 und ihrer Lösungen Die Kristallstruktur von [Na4·7 en]Sn9. Chemische Berichte. 1976, 109 (100): 3404–3418. doi:10.1002/cber.19761091018.
- ^ Critchlow, S. C.; Corbett, J. D. Homopolyatomic anions. The synthesis and characterization of the novel paramagnetic nonastannide(3-) anion Sn93−, a D3h cluster with 21 skeletal electrons. J. Am. Chem. Soc. 1983, 105 (17): 5715–5716. doi:10.1021/ja00355a045.
- ^ Fässler, T.F.; Hoffmann, S. Na7Sn12: A Binary Zintl Phase with a Two-Dimensional Covalently Bonded Tin Framework. Inorg. Chem. 2003, 42 (18): 5474–5476. doi:10.1021/ic030148u.