用户:Riskchard/TextPage3

维基百科,自由的百科全书
7亿年后太阳进入红巨星阶段,地球被烧成焦土的意想图。[1]

地球的未来 可以由几个地球长期的转变估计,包括地球表面的化学状态,地球内部冷却的速度, 与其他太阳系行星的摄动,以及太阳光度稳定的增长。当中不明朗的人为因素, 如地球工程的技术,[2] 导致地球明显的变化。[3][4] 目前的生态危机[5] 主要是由人类科技发展导致[6]而其影响可能会持续长达500万年。[7]科技发展亦可能导致人类灭绝, 使地球回复到缓慢的进化步伐及长期的自然过程。[8][9]

数百万年之间,随机的天体事件构成了全球性生物圈的风险,这可能会导致物种大灭绝 。这些天体事件包括100光年内的超新星爆发,直径为5-10公里(3.1〜6.2英里)以上的彗星小行星。其他大型地质事件更具可预测性。如果忽视全球暖化的长期影响, 米兰科维奇循环 估计地球将会继续处于冰期至少到第四纪冰河时期结束。这是由地球轨道的离心, 转轴倾角进动现象的因素导致。[10]随着超大陆旋回的进行, 地球板块将可能在2.5至3.5亿年间形成一个超大陆。在1.5-4.5亿年后, 地球的转轴倾角可能出现最多90度的变化。

约1.1亿年后,太阳光度将高于目前10%。 这足以令大气层成为“温室”,使海水大量蒸发。在之后的3亿年,太阳的亮度将稳步增加,导致地球的太阳辐射上升。这将导致减少在大气中的二氧化碳水平。在6亿年内,大气中二氧化碳的浓度将低于维持C3类植物光合作用所需的水平。 C4类植物虽然能在二氧化碳浓度低至数百万分之十的环境下生存,但长期来说地球的植物是趋向灭亡,而动物也会因欠缺氧气的补充在数百万年后灭种。[11][12]

地球最有可能的命运是,7.5亿年后进入红巨星阶段的太阳膨胀到地球的轨道,并把地球吸收。

人类活动的影响

人类对地球生物圈有关键影响, 其庞大的人口主导着地球上许多生态系统[3]现阶段人类活动已经产生了地球表面显著的变化。超过三分之一的土地面积被人类改动,并使用了全球约20%的初级生产[4]工业革命以来,大气中二氧化碳的浓度增加了近30%。[3] 这导致了广泛及持续的物种灭绝,总称为全新世灭绝事件。自20世纪50年代以来,人类活动所造成的大规模物种灭绝占总物种数约10%(截至2007年)。[6]目前大约有30%的物种有在未来一百年内灭绝的危机。[13] 现代的物种灭绝事件主要是栖息地的破坏, 广泛分布的入侵物种, 人类的狩猎活动气候变化的结果。[14][15]物种灭绝的后果会持续至少500万年。[7]这可能会导致地球生态的生物多样性下降。

目前有多个已知可对人类生存造成威胁甚至使人类灭亡的危机。这些由人类自身造成的危机包括奈米科技的误用、核战争基因工程造成的疾病,或由一些物理实验所造成的大型灾难。 同样,一些自然事件可能造成世界末日的威胁, 包括致命性的疾病, 小行星或彗星的撞击事件,失控的温室效应及资源枯竭。然而,计算这些情况发生的实际可能性十分困难。[8][9]

如果人类灭绝,人类建造的各样建筑物将开始腐烂。大型建筑物的半衰期估计约为1000年。能存在最长时间的建筑物​​有可能是露天矿场、大型垃圾填埋场、运河、主要公路及大型水坝。一万年后,几个巨大的石碑如吉萨金字塔群拉什莫尔山雕塑仍可能以某种形式生存。[9]

随机事件

美国亚利桑那州巴林杰陨石坑

由于太阳绕银河系,随机移动的恒星若足够地接近,会对太阳系有破坏性的影响。[16]密切的恒星相遇可能导致奥尔特云彗星拱点显著减少。[17]这样可以触达到太阳系内的彗星数量40倍的增长。从这些彗星的影响,可以引发大规模灭绝地球上的生命。这些灾难发生平均每4500万年一次。[18] The mean time for the 太阳 to collide with another star in the solar neighborhood is approximately Template:现在rap, which is much longer than the 估计 年龄 of the Milky Way galaxy, at Template:现在rap. This can be taken as an indication of the low likelihood of such an event occurring during the lifetime of the 地球.[19]

直径为5-10公里(3.1〜6.2英里)或更大的小行星或彗星的撞击能量足以释放一个全球性的生态灾难及导致物种灭绝的数量显著的上升。由大型撞击事件造成的另一个不利影响是使灰尘笼罩地球,在一周之内降低陆地温度约15°C 及停止光合作用几个月。大型撞击事件 is 估计 to be at least 100 million 年. During the last 540 million 年, simulations demonstrated that such an impact rate is sufficient to 导致 5–6 mass extinctions and 20–30 lower severity events. This matches the geologic record of significant extinctions during the Phanerozoic era. Such events can be expected to continue into the 未来.[20]

A supernova is a cataclysmic explosion of a star. Within the Milky Way galaxy, supernova explosions occur on aver年龄 once every 30 年. During the history of the 地球, multiple such events have likely occurred within a distance of 100 light 年. Explosions inside this distance can contaminate the 地球 with radioisotopes and possibly impact the biosphere.[21] Gamma rays emitted by a supernova react with nitrogen in the atmosphere, producing nitrous oxides. These molecules 导致 a depletion of the ozone layer that protects the surface from ultraviolet radiation from the 太阳. An 上升 in UV-B radiation of only 10–30% is sufficient to 导致 a significant impact to life; particularly to the phytoplankton that form the base of the 海洋ic food chain. A supernova explosion at a distance of 26 light 年 将会 reduce the ozone column density by half. On aver年龄, a supernova explosion occurs within 32 light 年 once every few hundred million 年, resulting in a depletion of the ozone layer lasting several centuries.[22] Over the next two 十亿 年, there 将会 be about 20 supernova explosions and one gamma ray burst that 将会 have a significant impact on the 地球's biosphere.[23]

The incremental effect of gravitational perturbations between the 地球s 导致s the inner 太阳系 as a whole to behave chaotically over long time periods. This does not significantly affect the stability of the 太阳系 over intervals of a few millions 年 or less, but over 十亿s of 年 the orbits of the 地球s become unpredictable. Computer simulations of the 太阳系 's evolution over the next five 十亿 年 suggest that there is a small (less than 1%) chance that a collision could occur between 地球 and either Mercury, Venus, or Mars.[24][25] During the same interval, the odds that the 地球 将会 be scattered out of the 太阳系 by a passing star are on the order of one part in 105. In such a scenario, the 海洋s would freeze solid within a several million 年, leaving only a few pockets of liquid water about 14 km(8.7 mi) underground. There is a remote chance that the 地球 将会 instead be captured by a passing binary star system, allowing the 地球's biosphere to remain intact. The odds of this happening are about one chance in three million.[26]

轨道和转轴

The gravitational perturbations of the other 地球s in the 太阳系 combine to modify the orbit of the 地球 and the orientation of its spin axis. These 改变 can influence the 地球ary climate.[10][27][28][29]

Glaciation

Historically, there have been cyclical ice 年龄s in which glacial sheets periodically covered the higher latitudes of the continents. Ice 年龄s may occur be导致 of 改变 in 海洋 circulation and continentality induced by plate tectonics.[30] The Milankovitch theory predicts that glacial periods occur during ice 年龄s be导致 of astronomical factors in combination with climate feedback mechanisms. The primary astronomical drivers are a higher than normal orbital eccentricity, a low axial tilt (or obliquity), and the alignment of summer solstice with the aphelion.[10] Each of these effects occur cyclically. For example, the eccentricity 改变 over time cycles of about 100,000 and 400,000 年, with the value ranging from less than 0.01 up to 0.05.[31][32] This is equivalent to a 改变 of the semiminor axis of the 地球's orbit from 99.95% of the semimajor axis to 99.88%, respectively.[33]

The 地球 is passing through an ice 年龄 k现在n as the quaternary glaciation, and is presently in the Holocene interglacial period. This period would normally be expected to end in about 25,000 年.[29] However, the 上升d rate of carbon dioxide release into the atmosphere by 人类s may delay the onset of the next glacial period until at least 50,000–130,000 年 from 现在. However, a global warming period of finite duration (based on the assumption that fossil fuel use 将会 cease by the 年 2200) 将会 probably only impact the glacial period for about 5,000 年. Thus, a brief period of global warming induced through a few centuries worth of greenhouse gas emission would only have a limited impact in the long term.[10]

Obliquity

A small gray circle at the top represents the Moon. A green circle centered in a blue ellipse represents the 地球 and its 海洋s. A curved arrow shows the counterclockwise direction of the 地球's rotation, resulting in the long axis of the ellipse being slightly out of alignment with the Moon.
The rotational offset of the tidal bulge exerts a net torque on the Moon, boosting it while slowing the 地球's rotation. This im年龄 is not to scale.

The tidal acceleration of the Moon slows the rotation rate of the 地球 and 上升s the 地球-Moon distance. Friction effects—between the core and mantle and between the atmosphere and surface—can dissipate the 地球's rotational energy. These combined effects are expected to 上升 the length of the day by more than 1.5 hours over the next 250 million 年, and to 上升 the obliquity by about a half degree. The distance to the Moon 将会 上升 by about 1.5 地球 radii during the same period.[34]

Based on computer models, the presence of the Moon appears to stabilize the obliquity of the 地球, which may help the 地球 to avoid dramatic climate 改变 .[35] This stability is achieved be导致 the Moon 上升s the precession rate of the 地球's spin axis, thereby avoiding resonances between the precession of the spin and precession frequencies of the ascending node of the 地球's orbit.[36] (That is, the precession motion of the ecliptic.) However, as the semimajor axis of the Moon's orbit continues to 上升 in the 未来, this stabilizing effect 将会 diminish. At some point perturbation effects 将会 probably 导致 chaotic variations in the obliquity of the 地球, and the axial tilt may 改变 by angles as high as 90° from the plane of the orbit. This is expected to occur within about 1.5–4.5 十亿 年, although the exact time is unk现在n.[37]

A high obliquity would probably result in dramatic 改变 in the climate and may destroy the 地球's habitability.[28] When the axial tilt of the 地球 reaches 54°, the equator 将会 receive less radiation from the 太阳 than the poles. The 地球 could remain at an obliquity of 60° to 90° for periods as long as 10 million 年.[38]

地球动力学

An irregular green shape against a blue background represents Pangaea.
Pangaea was the last supercontinent to form before the present.

Tectonics-based events 将会 continue to occur well into the 未来 and the surface 将会 be steadily reshaped by tectonic uplift, extrusions, and erosion. Mount Vesuvius can be expected to erupt about 40 times over the next 1,000 年. During the same period, about five to seven 地球quakes of magnitude 8 or greater should occur along the San Andreas Fault, while about 50 magnitude 9 events may be expected 世界wide. Mauna Loa should experience about 200 eruptions over the next 1,000 年, and the Old Faithful Geyser 将会 likely cease to operate. The Niagara Falls 将会 continue to retreat upstream, reaching Buffalo in about 30,000–50,000 年.[9]

In 10,000 年, the post-glacial rebound of the Baltic Sea 将会 have reduced the depth by about 90米(300英尺). The Hudson Bay 将会 下降 in depth by 100 m over the same period.[25] After 100,000 年, the island of Hawaii 将会 have shifted about 9 km(5.6 mi) to the northwest. The 地球 may be entering another glacial period by this time.[9]

大陆漂移

The theory of plate tectonics demonstrates that the continents of the 地球 are moving across the surface at the rate of a few centimeters per 年. This is expected to continue, causing the plates to relocate and collide. Continental drift is facilitated by two factors: the energy generation within the 地球 and the presence of a hydrosphere. With the loss of either of these, continental drift 将会 come to a halt.[39] The production of heat through radiogenic processes is sufficient to maintain mantle convection and plate subduction for at least the next 1.1 十亿 年.[40]

At present, the continents of North and South America are moving westward from Africa and Europe. Researchers have produced several scenarios about how this 将会 continue in the 未来.[41] These geodynamic models can be distinguished by the subduction flux, whereby the 海洋ic crust moves under a continent. In the introversion model, the younger, interior, Atlantic 海洋 becomes preferentially subducted and the current migration of North and South America is reversed. In the extroversion model, the older, exterior, Pacific 海洋 remains preferentially subducted and North and South America migrate toward eastern Asia.[42][43]

As the understanding of geodynamics improves, these models 将会 be subject to revision. In 2008, for example, a computer simulation was used to predict that a reorganization of the mantle convection 将会 occur, causing a supercontinent to form around Antarctica.[44]

Regardless of the outcome of the continental migration, the continued subduction process 导致s water to be transported to the mantle. After a 十亿 年 from the present, a geophysical model gives an 估计 that 27% of the current 海洋 mass 将会 have been subducted. If this process were to continue unmodified into the 未来, the subduction and release would reach a point of stability after 65% of the current 海洋 mass has been subducted.[45]

Introversion

Christopher Scotese and his colleagues have mapped out the predicted motions several hundred million 年 into the 未来 as part of the Paleomap Project.[41] In their scenario, 50 million 年 from 现在 the Mediterranean sea may vanish and the collision between Europe and Africa 将会 create a long mountain range extending to the current location of the Persian Gulf. Australia 将会 merge with Indonesia, and Baja California 将会 slide northward along the coast. New subduction zones may appear off the eastern coast of North and South America, and mountain chains 将会 form along those coastlines. To the south, the migration of Antarctica to the north 将会 导致 all of its ice sheets to melt. This, along with the melting of the Greenland ice sheets, 将会 raise the aver年龄 海洋 level by 90米(300英尺). The inland flooding of the continents 将会 result in climate 改变 .[41]

As this scenario continues, by 100 million 年 from the present the continental spreading 将会 have reached its maximum extent and the continents 将会 then begin to coalesce. In 250 million 年, North America 将会 collide with Africa while South America 将会 wrap around the southern tip of Africa. The result 将会 be the formation of a new supercontinent (sometimes called Pangaea Ultima), with the Pacific 海洋 stretching across half the 地球. The continent of Antarctica 将会 reverse direction and return to the South Pole, building up a new ice cap.[46]

Extroversion

The first scientist to extrapolate the current motions of the continents was Canadian geologist Paul F. Hoffman of Harvard University. In 1992, Hoffman predicted that the continents of North and South America would continue to advance across the Pacific 海洋, pivoting about Siberia until they begin to merge with Asia. He dubbed the resulting supercontinent, Amasia.[47][48] Later, in the 1990s, Roy Livermore calculated a similar scenario. He predicted that Antarctica would start to migrate northward, and east Africa and Madagascar would move across the Indian 海洋 to collide with Asia.[49]

In an extroversion model, the closure of the Pacific 海洋 would be complete in about 350 million 年.[50] This marks the completion of the current supercontinent cycle, wherein the continents split apart and then rejoin each other about every 400–500 million 年.[51] Once the supercontinent is built, plate tectonics may enter a period of inactivity as the rate of subduction drops by an order of magnitude. This period of stability could 导致 an 上升 in the mantle temperature at the rate of 30—100 K-改变[convert: 不明单位] every 100 million 年, which is the minimum lifetime of past supercontinents. As a consequence, volcanic activity may 上升.[43][50]

Supercontinent

The formation of a supercontinent can dramatically affect the environment. The collision of plates 将会 result in mountain building, thereby shifting weather patterns. Sea levels may fall be导致 of 上升d glaciation.[52] The rate of surface weathering can rise, resulting in an 上升 in the rate that organic material is buried. Supercontinents can 导致 a drop in global temperatures and an 上升 in atmospheric oxygen. This, in turn, can affect the climate, further lowering temperatures.[53] All of these 改变 can result in more rapid biological evolution as new niches emerge.

The formation of a supercontinent insulates the mantle. The flow of heat 将会 be concentrated, resulting in volcanism and the flooding of large areas with basalt. Rifts 将会 form and the supercontinent 将会 split up once more.[54] The 地球 may then experience a warming period, as occurred during the Cretaceous period.[53]

Solidification of the outer core

The iron-rich core region of the 地球 is divided into a 1,220 km(760 mi) radius solid inner core and a 3,480 km(2,160 mi) radius liquid outer core.[55] The rotation of the 地球 creates convective eddies in the outer core region that 导致 it to function as a dynamo.[56] This generates a magnetosphere about the 地球 that deflects particles from the solar wind, which prevents significant erosion of the atmosphere from sputtering. As heat from the core is transferred outward toward the mantle, the net trend is for the inner boundary of the liquid outer core region to freeze, thereby releasing thermal energy and causing the solid inner core to grow.[57] This iron crystallization process has been ongoing for about a 十亿 年. In the modern era, the radius of the inner core is expanding at an aver年龄 rate of roughly 0.5 mm(0.02英寸) per 年, at the expense of the outer core.[58] Nearly all of the energy needed to power the dynamo is being supplied by this process of inner core formation.[59]

The growth of the inner core may be expected to consume most of the outer core by some 3–4 十亿 年 from 现在, resulting in a nearly solid core composed of iron and other heavy elements. The surviving liquid envelope 将会 mainly consist of lighter elements that 将会 undergo less mixing.[60] Alternatively, if at some point plate tectonics comes to an end, the interior 将会 cool less efficiently, which may end the growth of the inner core. In either case, this can result in the loss of the magnetic dynamo. Without a functioning dynamo, the magnetic field of the 地球 将会 decay in a geologically short time period of roughly 10,000 年.[61] The loss of the magnetosphere 将会 导致 an 上升 in erosion of light elements, particularly hydrogen, from the 地球's outer atmosphere into space, resulting in less favorable conditions for life.[62]

太阳的演变

The energy generation of the 太阳 is based upon thermonuclear fusion of hydrogen into helium. This occurs in the core region of the star using the proton–proton chain reaction process. Be导致 there is no convection in the solar core, the helium concentration builds up in that region without being distributed throughout the star. The temperature at the core of the 太阳 is too low for nuclear fusion of helium atoms through the triple-alpha process, so these atoms do not contribute to the net energy generation that is needed to maintain hydrostatic equilibrium of the 太阳.[63]

At present, nearly half the hydrogen at the core has been consumed, with the remainder of the atoms consisting primarily of helium. As the number of hydrogen atoms per unit mass 下降, so too does their energy output provided through nuclear fusion. This results in a 下降 in pressure support, which 导致s the core to contract until the 上升d density and temperature bring the core pressure in to equilibrium with the layers above. The higher temperature 导致s the remaining hydrogen to undergo fusion at a more rapid rate, thereby generating the energy needed to maintain the equilibrium.[63]

Evolution of the 太阳's luminosity, radius and effective temperature compared to the present 太阳. After Ribas (2010)[64]

The result of this process has been a steady 上升 in the energy output of the 太阳. When the 太阳 first became a main sequence star, it radiated only 70% of the current luminosity. The luminosity has 上升d in a nearly linear fashion to the present, rising by 1% every 110 million 年.[65] Likewise, in three 十亿 年 the 太阳 is expected to be 33% more luminous. The hydrogen fuel at the core 将会 finally be exhausted in 4.8 十亿 年, when the 太阳 将会 be 67% more luminous than at present. Thereafter the 太阳 将会 continue to burn hydrogen in a shell surrounding its core, until the 上升 in luminosity reaches 121% of the present value. This marks the end of the 太阳's main sequence lifetime, and thereafter it 将会 pass through the subgiant st年龄 and evolve into a red giant.[1]

Climate impact

With the 上升d surface area of the 太阳, the amount of energy emitted 将会 上升. The global temperature of the 地球 将会 climb be导致 of the rising luminosity of the 太阳, the rate of weathering of silicate minerals 将会 上升. This in turn 将会 下降 the level of carbon dioxide in the atmosphere. Within the next 600 million 年 from the present, the concentration of CO
2
将会 fall below the critical threshold needed to sustain C3 photosynthesis: about 50 parts per million. At this point, trees and forests in their current forms 将会 no longer be able to survive.[66] However, C4 carbon fixation can continue at much lower concentrations, down to above 10 parts per million. Thus plants using Template:C4 photosynthesis may be able to survive for at least 0.8 十亿 年 and possibly as long as 1.2 十亿 年 from 现在, after which rising temperatures 将会 make the biosphere unsustainable.[67][68][69] Currently, Template:C4 plants represent about 5% of 地球's plant biomass and 1% of its k现在n plant species.[70] For example, about 50% of all grass species (Poaceae) use the Template:C4 photosynthetic pathway,[71] as do many species in the herbaceous family Amaranthaceae.[72]

When the levels of carbon dioxide fall to the limit where photosynthesis is barely sustainable, the proportion of carbon dioxide in the atmosphere is expected to oscillate up and down. This 将会 allow land vegetation to flourish each time the level of carbon dioxide rises due to tectonic activity and animal life. However, the long term trend is for the plant life on land to die off altogether as most of the remaining carbon in the atmosphere becomes sequestered in the 地球.[73] Some microbes are capable of photosynthesis at concentrations of CO
2
of a few parts per million, so these life forms would probably disappear only be导致 of rising temperatures and the loss of the biosphere.[67] The loss of plant life 将会 also result in the eventual loss of oxygen and with it the death of animals; the first animals to disappear would be large mammals followed by small mammals and birds, amphibians, reptiles, and finally invertebrates.[74]

In their work The Life and Death of 地球 地球, authors Peter D. Ward and Donald Brownlee have also argued that some form of animal life may continue even after most of the 地球's plant life has disappeared. Initially, they expect that some insects, lizards, birds and small mammals may persist, along with sea life. Without oxygen replenishment by plant life, however, they believe that the animals would probably die off from asphyxiation within a few million 年. Even if sufficient oxygen were to remain in the atmosphere through the persistence of some form of photosynthesis, the steady rise in global temperature would result in a gradual loss of biodiversity. As temperatures continue to rise, the last animal life 将会 inevitably be driven back toward the poles, terrestrial food chains 将会 become fungus-based, and many of these animals 将会 become simpler but tougher in body structure. Much of the surface would become a barren desert and life would primarily be found in the 海洋s[73]; however, due also to a 下降 of the amount or organic matter coming to the 海洋s from the land, life would disappear too there following a similar path to that on 地球's surface with invertebrates being the last living animals[74]. As a result of these processes, multi-cellular lifeforms may be extinct in about 800 million 年, and eukaryotes in 1.3 十亿 年 from 现在, leaving only the prokaryotes.[75]

海洋-free era

By one 十亿 年 from 现在, about 27% of the modern 海洋 将会 have been subducted into the mantle. If this process were allowed to continue uninterrupted, it would reach an equilibrium state where 65% of the current surface reservoir would remain at the surface.[76] Once the solar luminosity is 10% higher than its current value, the aver年龄 global surface temperature 将会 rise to 320 K(47 °C). The atmosphere 将会 become a "moist greenhouse" leading to a runaway evaporation of the 海洋s.[77][78] At this point, models of the 地球's 未来 environment demonstrate that the stratosphere would contain 上升 levels of water. These water molecules 将会 be broken down through photodissociation by solar ultraviolet radiation, allowing hydrogen to escape the atmosphere. The net result would be a loss of the 世界's sea water by about 1.1 十亿 年 from the present.[79][80]

Light brown clouds wrap around a 地球, as seen from space.
The atmosphere of Venus is in a "supergreenhouse" state.

In this 海洋-free era, there 将会 continue to be reservoirs at the surface as water is steadily released from the deep crust and mantle[45], where it's 估计 there's an amount of water equivalent to several times the currently present on 地球's 海洋s[81]. Some water may be retained at the poles and there may be occasional rainstorms, but for the most part the 地球 would be a dry desert. Even in these arid conditions, the 地球 may retain some microbial and possibly even multi-cellular life.[78] Most of these microbes 将会 be halophiles. However, the 上升ly extreme conditions 将会 likely lead to the extinction of the prokaryotes between 1.6 十亿 年[75] and 2.8 十亿 年 [74] from 现在, with the last of them living in residual ponds of water at high latitudes and heights or in caverns with trapped ice; underground life, however, could last longer[74]. What happens next depends on the level of tectonic activity. A steady release of carbon dioxide by volcanic eruption could eventually 导致 the atmosphere to enter a "supergreenhouse" state like that of the 地球 Venus. But without surface water, plate tectonics would probably come to a halt and most of the carbonates would remain securely buried[82] until the 太阳 became a red giant and its 上升 on luminosity heated them releasing the carbon dioxide.[81]

The loss of the 海洋s could be delayed until two 十亿 年 in the 未来 if the total atmospheric pressure were to decline. A lower atmospheric pressure would reduce the greenhouse effect, thereby lowering the surface temperature. This could occur if natural processes were to remove the nitrogen from the atmosphere. Studies of organic sediments has shown that at least 100千帕斯卡(0.99标准大气压) of nitrogen has been removed from the atmosphere over the past four 十亿 年; enough to effectively double the current atmospheric pressure if it were to be released. This rate of removal would be sufficient to counter the effects of 上升 solar luminosity for the next two 十亿 年. However, beyond that point, unless most of 地球's surface water has been lost by that time, in which case the 地球 将会 stay in the same conditions until the starting of the red giant phase[78], the amount of water in the lower atmosphere 将会 have risen to 40% and the runaway moist greenhouse 将会 commence[83] when the luminosity from the 太阳 reaches 35–40% more than its current value, 3–4 十亿 年 from 现在.[79] The atmosphere 将会 heat up and the surface temperature 将会 rise sufficiently to melt surface rock.[80][78] However, most of the atmosphere 将会 be retained until the 太阳 has entered the red giant st年龄[84]

Red giant st年龄

A large red disk represents the 太阳. An inset box shows the current 太阳 as a yellow dot.
The size of the current 太阳 (现在 in the main sequence) compared to its 估计 size during its red giant phase

Once the 太阳 改变 from burning hydrogen at its core to burning hydrogen around its shell, the core 将会 start to contract and the outer envelope 将会 expand. The total luminosity 将会 steadily 上升 over the following 十亿 年 until it reaches 2,730 times the 太阳's current luminosity at the 年龄 of 12.167 十亿 年. During this phase the 太阳 将会 experience more rapid mass loss, with about 33% of its total mass shed with the solar wind. The loss of mass 将会 mean that the orbits of the 地球s 将会 expand. The orbital distance of the 地球 将会 上升 to at most 150% of its current value.[65]

The most rapid part of the 太阳's expansion into a red giant 将会 occur during the final st年龄s, when the 太阳 将会 be about 12 十亿 年 old. It is likely to expand to swallow both Mercury and Venus, reaching a maximum radius of 1.2 AU(180,000,000 km). The 地球 将会 interact tidally with the 太阳's outer atmosphere, which would serve to 下降 地球's orbital radius. Drag from the chromosphere of the 太阳 would also reduce the 地球's orbit. These effects 将会 act to counterbalance the effect of mass loss by the 太阳, and the 地球 将会 most likely be engulfed by the 太阳.[65] The ablation and vaporization 导致d by its fall on a decaying trajectory towards the 太阳 将会 remove 地球's crust and mantle, then finally destroy it after at most 200 年.[85] 地球's sole legacy 将会 be a very slight 上升 (0.01%) of the solar metallicity.[86]

Before this happens, most of 地球's atmosphere 将会 have been lost to space and its surface 将会 consist of a magma 海洋 with floating continents of metals and metal oxides as well as icebergs of refractory materials, with its surface temperature reaching more than 2,400 K(2,130 °C). [87]

The drag from the solar atmosphere may 导致 the orbit of the Moon to decay. Once the orbit of the Moon closes to a distance of 18,470 km(11,480 mi), it 将会 cross the 地球's Roche limit. Tidal interaction with the 地球 would then break apart the Moon, turning it into a ring system. Most of the orbiting ring 将会 then begin to decay, and the debris 将会 impact the 地球. Hence, even if the 地球 is not swallowed up by the 太阳, the 地球 may be left moonless.[88]

See also

References

  1. ^ 1.0 1.1 Sackmann, I.-Juliana; Boothroyd, Arnold I.; Kraemer, Kathleen E., Our 太陽. III. Present and 未來, The Astrophysical Journal, Bibcode:1993ApJ...418..457S, doi:10.1086/173407.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  2. ^ Keith, David W., Geoengineering the Environment: History and Prospect, Annual Review of Energy and the Environment, doi:10.1146/annurev.energy.25.1.245.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  3. ^ 3.0 3.1 3.2 Vitousek, Peter M.; Mooney, Harold A.; Lubchenco, Jane; Melillo, Jerry M., 人類 Domination of 地球's Ecosystems, Science, July 25, 1997, 277 (5325), doi:10.1126/science.277.5325.494.  已忽略未知参数|p年龄s= (帮助)
  4. ^ 4.0 4.1 Haberl, Helmut; et al, Quantifying and mapping the 人類 appropriation of net primary production in 地球's terrestrial ecosystems, Procedings of the National Academy of Science, U.S.A., Bibcode:2007PNAS..10412942H, PMC 1911196可免费查阅, PMID 17616580, doi:10.1073/pnas.0704243104.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助); Authors list列表中的|first8=缺少|last8= (帮助); Authors list列表中的|first9=缺少|last9= (帮助)
  5. ^ Myers, N.; Knoll, A. H., The biotic crisis and the 未來 of evolution, Proceedings of the National Academy of Science, U.S.A., May 8, 2001, 98 (1), Bibcode:2001PNAS...98.5389M, PMC 33223可免费查阅, PMID 11344283, doi:10.1073/pnas.091092498.  已忽略未知参数|p年龄s= (帮助)
  6. ^ 6.0 6.1 Myers 2000,第63–70页.
  7. ^ 7.0 7.1 Reaka-Kudla, Wilson & Wilson 1997,第132–133页.
  8. ^ 8.0 8.1 Bostrom, Nick. Existential Risks: Analyzing 人類 Extinction Scenarios and Related Hazards. Journal of Evolution and Technology. [2011-08-09].  已忽略未知参数|年= (帮助)
  9. ^ 9.0 9.1 9.2 9.3 9.4 Dutch, Steven Ian, The 地球 Has a 未來, Geosphere, doi:10.1130/GES00012.1.  已忽略未知参数|p年龄s= (帮助)
  10. ^ 10.0 10.1 10.2 10.3 Cochelin, Anne-Sophie B.; Mysak, Lawrence A.; Wang, Zhaomin, Simulation of long-term 未來 climate 改變 with the green McGill paleoclimate model: the next glacial inception, Climatic 改变 , doi:10.1007/s10584-006-9099-1.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  11. ^ Ward & Brownlee 2003,第142页.
  12. ^ Fishbaugh et al. 2007,第114页.
  13. ^ Novacek, M. J.; Cleland, E. E., The current biodiversity extinction event: scenarios for mitigation and recovery, Proceedings of the National Academy of Science, U.S.A., Bibcode:2001PNAS...98.5466N, PMC 33235可免费查阅, PMID 11344295, doi:10.1073/pnas.091093698.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  14. ^ Cowie 2007,第162页.
  15. ^ Thomas, Chris D.; et al, Extinction risk from climate 改變, Nature, PMID 14712274, doi:10.1038/nature02121.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  16. ^ Matthews, R. A. J. The Close Approach of Stars in the Solar Neighborhood. Quarterly Journal of the Royal Astronomical Society. Bibcode:1994QJRAS..35....1M.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  17. ^ Scholl, H.; Cazenave, A.; Brahic, A. The effect of star pass年齡s on cometary orbits in the Oort cloud. Astronomy and Astrophysics. Bibcode:1982A&A...112..157S.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  18. ^ Frogel, Jay A.; Gould, Andrew, No Death Star--For 現在, Astrophysical Journal Letters, Bibcode:1998ApJ...499L.219F, arXiv:astro-ph/9801052可免费查阅, doi:10.1086/311367.  已忽略未知参数|p年龄= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  19. ^ Tayler 1993,第92页.
  20. ^ Rampino, Michael R.; Haggerty, Bruce M., The "Shiva Hypothesis": Impacts, Mass Extinctions, and the Galaxy, 地球, Moon and 地球s, Bibcode:1996EM&P...72..441R, doi:10.1007/BF00117548.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  21. ^ Fields, Brian D., Live radioisotopes as signatures of nearby supernovae, New Astronomy Reviews, Bibcode:2004NewAR..48..119F, doi:10.1016/j.newar.2003.11.017.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  22. ^ Hanslmeier 2009,第174–176页.
  23. ^ Beech, Martin, The past, present and 未來 supernova threat to 地球's biosphere, Astrophysics and Space Science, Bibcode:2011Ap&SS.336..287B, doi:10.1007/s10509-011-0873-9.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  24. ^ Laskar, J.; Gastineau, M. Existence of collisional trajectories of Mercury, Mars and Venus with the 地球. Nature. June 11, 2009, 459 (7248). Bibcode:2009Natur.459..817L. PMID 19516336. doi:10.1038/nature08096.  已忽略未知参数|p年龄s= (帮助)
  25. ^ 25.0 25.1 Laskar, Jacques, Mercury, Mars, Venus and the 地球: when 世界s collide!, L'Observatoire de Paris, [2011-08-11].  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  26. ^ Adams 2008,第33–44页.
  27. ^ Shackleton, Nicholas J., The 100,000-年 Ice-年齡 Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity, Science, September 15, 2000, 289 (5486), Bibcode:2000Sci...289.1897S, PMID 10988063, doi:10.1126/science.289.5486.1897.  已忽略未知参数|p年龄s= (帮助)
  28. ^ 28.0 28.1 Hanslmeier 2009,第116页.
  29. ^ 29.0 29.1 Roberts 1998,第60页.
  30. ^ Lunine & Lunine 1999,第244页.
  31. ^ Berger, A.; Loutre, M., Insolation values for the climate of the last 10 million 年, Quaternary Science Reviews, Bibcode:1991QSRv...10..297B, doi:10.1016/0277-3791(91)90033-Q.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  32. ^ Maslin, Mark A.; Ridgwell, Andy J., Mid-Pleistocene revolution and the 'eccentricity myth', Geological Society, London, Special Publications, Bibcode:2005GSLSP.247...19M, doi:10.1144/GSL.SP.2005.247.01.02.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  33. ^ The eccentricity e is related to the semimajor axis a and the semiminor axis b as follows:
    Thus for e equal to 0.01, b/a = 0.9995, while for e equal to 0.05, b/a = 0.99875. See:
    Weisstein, Eric W., CRC concise encyclopedia of mathematics 2nd, CRC Press, ISBN 1-58488-347-2.  已忽略未知参数|p年龄= (帮助); 已忽略未知参数|年= (帮助)
  34. ^ Laskar, J.; et al, A long-term numerical solution for the insolation quantities of the 地球, Astronomy & Astrophysics, Bibcode:2004A&A...428..261L, doi:10.1051/0004-6361:20041335.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  35. ^ Laskar, J.; Joutel, F.; Robutel, P., Stabilization of the 地球's obliquity by the Moon, Nature, February 18, 1993, 361 (6413), Bibcode:1993Natur.361..615L, doi:10.1038/361615a0.  已忽略未知参数|p年龄s= (帮助)
  36. ^ Atobe, Keiko; Ida, Shigeru; Ito, Takashi, Obliquity variations of terrestrial 地球s in habitable zones, Icarus, Bibcode:2004Icar..168..223A, doi:10.1016/j.icarus.2003.11.017.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  37. ^ Neron de Surgy, O.; Laskar, J., On the long term evolution of the spin of the 地球, Astronomy and Astrophysics, Bibcode:1997A&A...318..975N.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  38. ^ Donnadieu, Yannick; et al, Is high obliquity a plausible 導致 for Neoproterozoic glaciations?, Geophysical Research Letters, Bibcode:2002GeoRL..29w..42D, doi:10.1029/2002GL015902.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  39. ^ Lindsay, J. F.; Brasier, M. D., Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins, Precambrian Research, doi:10.1016/S0301-9268(01)00219-4.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  40. ^ Lindsay, John F.; Brasier, Martin D., A comment on tectonics and the 未來 of terrestrial life—reply (PDF), Precambrian Research, [2009-08-28], doi:10.1016/S0301-9268(02)00144-4.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  41. ^ 41.0 41.1 41.2 Ward 2006,第231–232页.
  42. ^ Murphy, J. Brendan; Nance, R. Damian; Cawood, Peter A., Contrasting modes of supercontinent formation and the conundrum of Pangea, Gondwana Research, doi:10.1016/j.gr.2008.09.005.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  43. ^ 43.0 43.1 Silver, Paul G.; Behn, Mark D., Intermittent Plate Tectonics?, Science, January 4, 2008, 319 (5859), Bibcode:2008Sci...319...85S, PMID 18174440, doi:10.1126/science.1148397.  已忽略未知参数|p年龄s= (帮助)
  44. ^ Trubitsyn, Valeriy; Kabana, Mikhail K.; Rothachera, Marcus, Mechanical and thermal effects of floating continents on the global mantle convection, Physics of the 地球 and 地球ary Interiors, Bibcode:2008PEPI..171..313T, doi:10.1016/j.pepi.2008.03.011.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  45. ^ 45.0 45.1 Bounama, Christine; Franck, Siegfried; von Bloh, Werner, The fate of 地球’s 海洋 (PDF), Hydrology and 地球 System Sciences (Germany: Potsdam Institute for Climate Impact Research), [2009-07-03], Bibcode:2001HESS....5..569B, doi:10.5194/hess-5-569-2001.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助) 引证错误:带有name属性“hess5_4”的<ref>标签用不同内容定义了多次
  46. ^ Ward & Brownlee 2003,第92–96页.
  47. ^ Nield 2007,第20–21页.
  48. ^ Hoffman 1992,第323–327页.
  49. ^ 将会iams, Caroline; Nield, Ted, Pangaea, the comeback, New Scientist, October 20, 2007 [2009-08-28]. 
  50. ^ 50.0 50.1 Silver, P. G.; Behn, M. D., Intermittent Plate Tectonics, American Geophysical Union, Fall Meeting 2006, abstract #U13B-08, Bibcode:2006AGUFM.U13B..08S.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  51. ^ Nance, R. D.; Worsley, T. R.; Moody, J. B., The supercontinent cycle (PDF), Scientific American, [2009-08-28], Bibcode:1988SciAm.259...72N, doi:10.1038/scientificamerican0788-72.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  52. ^ Calkin & Young 1996,第9–75页.
  53. ^ 53.0 53.1 Thompson & Perry 1997,第127–128页.
  54. ^ Palmer 2003,第164页.
  55. ^ Nimmo, F.; et al, The influence of potassium on core and geodynamo evolution, Geophysical Journal International, Bibcode:2003EAEJA.....1807N, doi:10.1111/j.1365-246X.2003.02157.x.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  56. ^ Gonzalez & Richards 2004,第48页.
  57. ^ Gubbins, David; Sreenivasan, Binod; Mound, Jon; Rost, Sebastian, Melting of the 地球’s inner core, Nature, May 19, 2011, 473, Bibcode:2011Natur.473..361G, PMID 21593868, doi:10.1038/nature10068.  已忽略未知参数|p年龄s= (帮助)
  58. ^ Monnereau, Marc; et al, Lopsided Growth of 地球's Inner Core, Science, May 21, 2010, 328 (5981), Bibcode:2010Sci...328.1014M, PMID 20395477, doi:10.1126/science.1186212.  已忽略未知参数|p年龄s= (帮助)
  59. ^ Stacey, F. D.; Stacey, C. H. B., Gravitational energy of core evolution: implications for thermal history and geodynamo power, Physics of the 地球 and 地球ary Interiors, Bibcode:1999PEPI..110...83S, doi:10.1016/S0031-9201(98)00141-1.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  60. ^ Meadows 2007,第34页.
  61. ^ Stevenson 2002,第605页.
  62. ^ van Thienen, P.; et al, Water, Life, and 地球ary Geodynamical Evolution, Space Science Reviews, Bibcode:2007SSRv..129..167V, doi:10.1007/s11214-007-9149-7.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助) In particular, see p年龄 24.
  63. ^ 63.0 63.1 Gough, D. O., Solar interior structure and luminosity variations, Solar Physics, Bibcode:1981SoPh...74...21G, doi:10.1007/BF00151270.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  64. ^ Ribas, Ignasi, The 太陽 and stars as the primary energy input in 地球ary atmospheres, Solar and Stellar Variability: Impact on 地球 and 地球s, Proceedings of the International Astronomical Union, IAU Symposium 264, Bibcode:2010IAUS..264....3R, arXiv:0911.4872可免费查阅, doi:10.1017/S1743921309992298.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  65. ^ 65.0 65.1 65.2 Schröder, K.-P.; Connon Smith, Robert, Distant 未來 of the 太陽 and 地球 revisited, Monthly Notices of the Royal Astronomical Society, Bibcode:2008MNRAS.386..155S, arXiv:0801.4031可免费查阅, doi:10.1111/j.1365-2966.2008.13022.x.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  66. ^ Heath, Martin J.; Doyle, Laurance R. Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested 未來 Directions. arXiv:0912.2482可免费查阅.  已忽略未知参数|年= (帮助)
  67. ^ 67.0 67.1 Caldeira, Ken; Kasting, James F., The life span of the biosphere revisited, Nature, Bibcode:1992Natur.360..721C, PMID 11536510, doi:10.1038/360721a0.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  68. ^ Franck, S.; et al, Reduction of biosphere life span as a consequence of geodynamics, Tellus B, Bibcode:2000TellB..52...94F, doi:10.1034/j.1600-0889.2000.00898.x.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  69. ^ Lenton, Timothy M.; von Bloh, Werner, Biotic feedback extends the life span of the biosphere, Geophysical Research Letters, Bibcode:2001GeoRL..28.1715L, doi:10.1029/2000GL012198.  已忽略未知参数|年= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助)
  70. ^ Bond, W. J.; Woodward, F. I.; Midgley, G. F., The global distribution of ecosystems in a 世界 without fire, New Phytologist, PMID 15720663, doi:10.1111/j.1469-8137.2004.01252.x.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  71. ^ van der Maarel 2005,第363页.
  72. ^ Kadereit, G.; et al, Phylogeny of Amaranthaceae and Chenopodiaceae and the Evolution of C4 Photosynthesis (PDF), International Journal of Plant Sciences, doi:10.1086/378649.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  73. ^ 73.0 73.1 Ward & Brownlee 2003,第117–128页.
  74. ^ 74.0 74.1 74.2 74.3 O'Malley-James, J. T.; Greaves, J. S.; Raven, J. A.; Cockell, C. S., Swansong Biospheres: Refuges for life and novel microbial biospheres on terrestrial 地球s near the end of their habitable lifetimes, Bibcode:2012arXiv1210.5721O, arXiv:1210.5721可免费查阅. 
  75. ^ 75.0 75.1 Franck, S.; Bounama, C.; von Bloh, W., 導致s and timing of 未來 biosphere extinction (PDF), Biogeosciences Discussions, [2011-10-19], Bibcode:2005BGD.....2.1665F, doi:10.5194/bgd-2-1665-2005.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  76. ^ Bounama, Christine; Franck, S.; Von Bloh, W., The fate of 地球's 海洋 (PDF), Hydrology and 地球 System Sciences (Germany: Potsdam Institute for Climate Impact Research), [2009-07-03], Bibcode:2001HESS....5..569B, doi:10.5194/hess-5-569-2001.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  77. ^ Schröder, K.-P.; Connon Smith, Robert, Distant 未來 of the 太陽 and 地球 revisited, Monthly Notices of the Royal Astronomical Society, May 1, 2008, 386 (1), Bibcode:2008MNRAS.386..155S, arXiv:0801.4031可免费查阅, doi:10.1111/j.1365-2966.2008.13022.x.  已忽略未知参数|p年龄s= (帮助)
  78. ^ 78.0 78.1 78.2 78.3 Brownlee 2010,第95页.
  79. ^ 79.0 79.1 Kasting, J. F., Runaway and moist greenhouse atmospheres and the evolution of 地球 and Venus, Icarus, Bibcode:1988Icar...74..472K, PMID 11538226, doi:10.1016/0019-1035(88)90116-9.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助)
  80. ^ 80.0 80.1 Guinan, E. F.; Ribas, I., Our Changing 太陽: The Role of Solar Nuclear Evolution and Magnetic Activity on 地球's Atmosphere and Climate, Montesinos, Benjamin; Gimenez, Alvaro; Guinan, Edward F. (编), ASP Conference Proceedings, The Evolving 太陽 and its Influence on 地球ary Environments, Astronomical Society of the Pacific, Bibcode:2002ASPC..269...85G.  已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  81. ^ 81.0 81.1 Brownlee 2010,第94页.
  82. ^ Lunine, J. I., Titan as an analog of 地球’s past and 未來, European Physical Journal Conferences, Bibcode:2009EPJWC...1..267L, doi:10.1140/epjconf/e2009-00926-7.  已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  83. ^ Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L., Atmospheric pressure as a natural climate regulator for a terrestrial 地球 with a biosphere, Proceedings of the National Academy of Sciences, June 16, 2009, 106 (24), Bibcode:2009PNAS..106.9576L, PMC 2701016可免费查阅, PMID 19487662, doi:10.1073/pnas.0809436106.  已忽略未知参数|p年龄s= (帮助)
  84. ^ Minard, Anne, 太陽 Stealing 地球's Atmosphere, National Geographic News, May 29, 2009 [2009-08-30]. 
  85. ^ Goldstein, J., The fate of the 地球 in the red giant envelope of the 太陽 178, Astronomy and Astrophysics, Bibcode:1987A&A...178..283G.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|p年龄s= (帮助); 已忽略未知参数|年= (帮助)
  86. ^ Adams, Fred C.; Laughlin, Gregory, A dying universe: the long-term fate and evolution of astrophysical objects 69, Reviews of Modern Physics, Bibcode:1997RvMP...69..337A, arXiv:astro-ph/9701131可免费查阅, doi:10.1103/RevModPhys.69.337.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|páges= (帮助); 已忽略未知参数|年= (帮助)
  87. ^ Kargel, J. S.; et al, Volatile Cycles and Glaciation: 地球 and Mars (現在 and Near a Red Giant 太陽), and Moons of Hot Jupiters, American Astronomical Society, DPS meeting# 35, #18.08; Bulletin of the American Astronomical Society, Bibcode:2003DPS....35.1808K.  已忽略未知参数|month=(建议使用|date=) (帮助); 已忽略未知参数|年= (帮助); 已忽略未知参数|p年龄s= (帮助)
  88. ^ Powell, David, 地球's Moon Destined to Disintegrate, Space.com (Tech Media Network), January 22, 2007 [2010-06-01]. 

引证错误:在<references>标签中name属性为“pnas01”的参考文献没有在文中使用

引证错误:在<references>标签中name属性为“telegraph20100410”的参考文献没有在文中使用

Bibliography

Further reading

Template:Physical 地球 Template:Nature nav