跳至內容

碳納米管化學

維基百科,自由的百科全書
上圖總結了碳納米管化學改性的選項。

碳納米管化學主要涉及改變碳納米管化學性質的反應。碳納米管功能化後能獲得可用於多種應用的所需特性。[1][2][3][4][5]碳納米管功能化的兩種主要方法是共價和非共價修飾。[6]

由於其疏水性,碳納米管容易團聚,阻礙其在溶劑或粘性聚合物熔體中的分散,故納米管束或聚集體產物會降低最終複合材料的機械性能。可以通過化學修飾碳納米管表面來降低疏水性並提高與本體聚合物的界面黏附力。[7]

共價修飾

碳納米管的共價修飾

共價修飾將官能團連接到碳納米管上,這些官能團可以附著在碳納米管的側壁或末端。[6]因為碳納米管的端部具有較高的金字塔化角度,故反應活性高;與之相反,碳納米管的壁具有較低的金字塔化角,反應活性較低。儘管共價修飾非常穩定,但由於鍵合過程形成了σ鍵[6],碳原子的sp2雜化會被破壞。破壞擴展的sp2雜化通常會降低碳納米管的導電性能。

氧化

碳納米管的純化和氧化已在文獻中得到很好的體現。[8][9][10][11]這些工藝對於低產率的碳納米管生產非常重要,其中碳顆粒、無定形碳顆粒和塗層不僅占總體材料的很大比例,還在引入表面官能團中有很大作用。[12]在酸氧化過程中,石墨層的碳-碳鍵合網絡被破壞,讓羧基酚基內酯基團形式的氧單元得以引入。[13]這些氧單元被廣泛用於進一步化學功能化。[14]

碳納米管氧化的最初研究涉及與空氣中的硝酸蒸氣的氣相反應,該反應不加區別地用羧基、羰基羥基對碳納米管進行官能化。[15]在液相反應中,用硝酸或硝酸和硫酸的組合的氧化溶液處理碳納米管可達到相同的效果。[16]但是可能會發生過度氧化,導致碳納米管被分解為碳質碎片。[17]邢等人提出了一種用硫酸和硝酸對碳納米管進行超聲輔助氧化的方法,有效地實現了碳納米管的功能化。[18]在酸性溶液中發生氧化反應後,用過氧化氫處理限制了對碳納米管網絡的損害。[19]使用發煙硫酸(100% H2SO4和3% SO3)和硝酸能以可擴展的方式縮短單壁碳納米管。 硝酸切割碳納米管,而發煙硫酸則形成通道。[6]

在一種化學修飾方法中,苯胺被氧化成重氮中間體。脫除氮後,形成芳基共價鍵:[20]

反應於水上的納米管功能化
反應於水上的納米管功能化

酯化/醯胺化

大多數化和醯胺化反應都使用羧基作為前體,使用亞硫醯氯或草醯氯將羧基轉化為醯氯,然後與所需的醯胺、胺或醇反應。[6]胺化反應可以將納米銀顆粒沉積在碳納米管上。醯胺官能化碳納米管已被證明可以螯合納米銀顆粒。用醯氯修飾的碳納米管很容易與高度支化的分子(例如聚醯胺胺)反應,這些支化的分子可以充當銀離子的模板,之後被甲醛還原。[21]氨基改性的碳納米管可以通過乙二胺與醯氯官能化的碳納米管反應來製備。[22]

鹵化反應

碳納米管可以用過氧三氟乙酸處理,主要給出羧酸和三氟乙酸官能團。[6]通過取代反應,氟化碳納米管可以用硫脲氨基矽烷進一步官能化。[23]利用漢斯狄克反應,用硝酸處理的碳納米管可以與二乙酸碘苯反應生成碘化碳納米管。[24]

環加成反應

我們還已知環加成反應的方案,例如狄爾斯–阿爾德反應、甲亞鹼葉立德的1,3-偶極環加成反應和疊氮-炔環加成反應。[25]一個例子是六羰基鉻和高壓輔助下的D-A反應。[26]丹尼謝夫斯基雙烯反應的ID/IG比為2.6。

最著名的1,3環加成反應涉及偶氮甲鹼葉立德與碳納米管的反應,該反應引起了人們的極大興趣。吡咯烷環的加成可產生多種官能團,例如第二代聚(醯胺基胺)樹枝狀聚合物[27]、酞菁加成物[28]、全氟烷基矽烷基團[29]、和氨基乙二醇基團。[30][31]碳納米管,尤其是氟化碳納米管上可以發生狄爾斯環加成反應。已知它們會與二烯(例如2,3-二甲基-1,3-丁二烯、和2-三甲基矽氧基-1,3-丁二烯)發生狄爾斯-阿爾德反應。[22]

自由基加成

上圖:顯示碳納米管與4-(1-芘基)苯基(a)及硼酸酯(b)相互作用的電子顯微照片。下:對應模型。[32]

Tour等人首先研究了芳基重氮鹽對碳納米管的改性。[33]因為原位生成重氮化合物反應條件苛刻,所以人們探索了其他方法。 史蒂芬森等人報道了一種使用96%硫酸和過硫酸銨作為溶劑,使用亞硝酸鈉取代苯胺生產中間體重氮鹽來對單臂碳納米管進行官能化的方法。[34]Price等人證明,在水中攪拌碳納米管並用苯胺和氧化劑處理是一種較溫和的反應。[6]重氮可以功能化碳納米管,用作進一步修飾的前體。[35]鈴木反應赫克偶聯反應在碘苯基官能化碳納米管上進行。[36]Wong等人展示了用三甲氧基矽烷和六苯基二矽烷進行溫和的光化學反應可將碳納米管甲矽烷基化。[37]

親核加成

Hirsch等人用有機鋰有機鎂化合物在碳納米管上進行親核加成。 通過在空氣中進一步氧化,他們能夠製造出烷基改性的碳納米管。[38]他們還能夠通過生成氨基鋰來展示胺的親核加成,從而產生氨基修飾的碳納米管。[39]

親電加成

納米管還可以使用鋰或鈉金屬和液氨用鹵代烷烴進行烷基化(伯奇還原反應條件)[40][41]初始納米管鹽可以作為聚合引發劑[42],並可以與過氧化物反應形成烷氧基官能化納米管。[43]

通過微波輻射對鹵代烷進行親電加成反應,證明了碳納米管的烷基和羥基修飾可行。[6]Tessonnier等人通過丁基鋰去質子化並與氨基取代反應,用氨基修飾碳納米管。[39]Balaban等人在180°C下用硝基苯和氯化鋁對碳納米管進行傅里德-克拉夫茨醯化。[44]

非共價修飾

碳納米管的非共價修飾

非共價修飾利用范德華力和π-π相互作用力吸附多核芳香族化合物、表面活性劑聚合物生物分子。非共價修飾不會以化學穩定性為代價破壞碳納米管的自然構型,並且在固態下容易發生相分離。[6]

多核芳香族化合物

碳納米管疏水,故會用一些用親水或疏水部分官能化的常見多核芳香族化合物把納米管溶解到有機或水性溶劑中。 部分常用的兩親物包含苯基卟啉系統。[45]與具有較差π-π堆積的苯基兩親物相比,較大的π-π堆積的芳香族兩親物(例如芘兩親物)具有最好的溶解度,可讓納米管在水中的溶解度變高。[45]在對碳納米管進行官能化之前,可以用氨基和羧酸基團對這些芳族體系進行修飾。[46]

生物分子

鑑於碳納米管潛在的生物學應用潛力,其與生物分子之間的相互作用已被廣泛研究。[47]通過自下而上的技術可以用蛋白質、碳水化合物和核酸對碳納米管進行修飾。蛋白質由於其疏水或親水的胺基酸多樣性而對碳納米管具有高親和力。[6]多糖已成功用於修飾碳納米管,形成穩定的雜化物。[48]為了使碳納米管可溶於水,可使用磷脂,例如溶甘油磷脂。[49]單尾磷脂可以纏繞住碳納米管,但雙尾磷脂不可以。

π-π堆積和靜電相互作用

具有雙官能團的分子可用於修飾碳納米管。分子的一端是多芳香族化合物,通過π-π堆積與碳納米管相互作用。同一分子的另一端具有氨基羧基硫醇等官能團。[6]例如,芘衍生物和芳基硫醇被用作各種金屬納米珠(如金、銀和鉑)的連接體。[50]

機械聯鎖

非共價修飾的一個特殊情況是形成單壁碳納米管(SWNT)的類輪烷機械互鎖衍生物。[51]該策略中,單壁碳納米管被分子大環封裝,分子大環有時在納米管周圍大環化[52][53],或在後期進行預成型。[54]在機械互鎖納米管中,SWNT和有機大環通過其拓撲結構和機械鍵連接,結合了共價策略的穩定性(必須破壞至少一個共價鍵才能分離SWNT和大環)具有經典非共價策略的結構完整性,即SWNT的C-sp2網絡保持完整。

參考來源

  1. ^ Prato, Maurizio; Kostarelos, Kostas; Bianco, Alberto. Functionalized Carbon Nanotubes in Drug Design and Discovery. Accounts of Chemical Research. 2008-01-01, 41 (1): 60–68 [2024-04-05]. ISSN 0001-4842. doi:10.1021/ar700089b. (原始內容存檔於2024-04-05) (英語). 
  2. ^ Sun, Ya-Ping; Fu, Kefu; Lin, Yi; Huang, Weijie. Functionalized Carbon Nanotubes: Properties and Applications. Accounts of Chemical Research. 2002-12-01, 35 (12): 1096–1104 [2024-04-05]. ISSN 0001-4842. doi:10.1021/ar010160v. (原始內容存檔於2024-04-05) (英語). 
  3. ^ Dubey, Rama; Dutta, Dhiraj; Sarkar, Arpan; Chattopadhyay, Pronobesh. Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Advances. 2021, 3 (20): 5722–5744. ISSN 2516-0230. PMC 9419119可免費查閱. PMID 36132675. doi:10.1039/D1NA00293G (英語). 
  4. ^ Luo, Shao-Xiong Lennon; Swager, Timothy M. Chemiresistive sensing with functionalized carbon nanotubes. Nature Reviews Methods Primers. 2023-09-28, 3 (1) [2024-04-05]. ISSN 2662-8449. doi:10.1038/s43586-023-00255-6. (原始內容存檔於2024-04-10) (英語). 
  5. ^ Xu, Jiang; Cao, Zhen; Zhang, Yilin; Yuan, Zilin; Lou, Zimo; Xu, Xinhua; Wang, Xiangke. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere. March 2018, 195: 351–364 [2024-04-05]. doi:10.1016/j.chemosphere.2017.12.061. (原始內容存檔於2024-05-17) (英語). 
  6. ^ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 Karousis, Nikolaos; Tagmatarchis, Nikos; Tasis, Dimitrios. Current Progress on the Chemical Modification of Carbon Nanotubes. Chemical Reviews. 2010-06-14, 110 (9): 5366–5397. PMID 20545303. doi:10.1021/cr100018g. 
  7. ^ Lin, Tong; Bajpai, Vardhan; Ji, Tao; Dai, Liming. Chemistry of Carbon Nanotubes. Australian Journal of Chemistry. 2003-06-30, 56 (7): 635-651 [2024-04-05]. doi:10.1071/CH02254. (原始內容存檔於2024-04-18). 
  8. ^ Tsang, S. C.; Harris, P. J. F.; Green, M. L. H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature. 1993, 362 (6420): 520–522. Bibcode:1993Natur.362..520T. doi:10.1038/362520a0. 
  9. ^ Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening carbon nanotubes with oxygen and implications for filling. Nature. 1993, 362 (6420): 522–525. Bibcode:1993Natur.362..522A. doi:10.1038/362522a0. 
  10. ^ Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature. 1994, 372 (6502): 159–162. Bibcode:1994Natur.372..159T. doi:10.1038/372159a0. 
  11. ^ Hiura, Hidefumi; Ebbesen, Thomas W.; Tanigaki, Katsumi. Opening and purification of carbon nanotubes in high yields. Advanced Materials. 1995, 7 (3): 275–276. doi:10.1002/adma.19950070304. 
  12. ^ Esumi, K; Ishigami, M.; Nakajima, A.; Sawada, K.; Honda, H. Chemical treatment of carbon nanotubes. Carbon. 1996, 34 (2): 279–281. doi:10.1016/0008-6223(96)83349-5. 
  13. ^ Shaffer, M; Fan, X.; Windle, A.H. Dispersion and packing of carbon nanotubes. Carbon. 1998, 36 (11): 1603–1612. doi:10.1016/S0008-6223(98)00130-4. 
  14. ^ Sun, Ya-Ping; Fu, Kefu; Lin, Yi; Huang, Weijie. Functionalized Carbon Nanotubes: Properties and Applications. Accounts of Chemical Research. 2002, 35 (12): 1096–104. PMID 12484798. doi:10.1021/ar010160v. 
  15. ^ Xia, Wei; Jin, Chen; Kundu, Shankhamala; Muhler, Martin. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon. 2009-03-01, 47 (3): 919–922. doi:10.1016/j.carbon.2008.12.026. 
  16. ^ Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008-05-01, 46 (6): 833–840. doi:10.1016/j.carbon.2008.02.012. 
  17. ^ Bergeret, Céline; Cousseau, Jack; Fernandez, Vincent; Mevellec, Jean-Yves; Lefrant, Serge. Spectroscopic Evidence of Carbon Nanotubes' Metallic Character Loss Induced by Covalent Functionalization via Nitric Acid Purification. The Journal of Physical Chemistry C. 2008-10-23, 112 (42): 16411–16416. doi:10.1021/jp806602t. 
  18. ^ Xing, Yangchuan; Li, Liang; Chusuei, Charles C.; Hull, Robert V. Sonochemical Oxidation of Multiwalled Carbon Nanotubes. Langmuir. 2005-04-01, 21 (9): 4185–4190. PMID 15835993. doi:10.1021/la047268e. 
  19. ^ Avilés, F.; Cauich-Rodríguez, J. V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon. 2009-11-01, 47 (13): 2970–2975. doi:10.1016/j.carbon.2009.06.044. 
  20. ^ Price, B. K.; Tour, J. M. Functionalization of Single-Walled Carbon Nanotubes "On Water". Journal of the American Chemical Society. 2006, 128 (39): 12899–12904. PMID 17002385. doi:10.1021/ja063609u. 
  21. ^ Tao, Lei; Chen, Gaojian; Mantovani, Giuseppe; York, Steve; Haddleton, David M. Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons: Synthesis and metal templating. Chemical Communications. 2006, (47): 4949–51 [2024-04-05]. PMID 17136257. doi:10.1039/B609065F. (原始內容存檔於2024-10-07). 
  22. ^ 22.0 22.1 Jeong, J. S.; Jeon, S. Y.; Lee, T. Y.; Park, J. H.; Shin, J. H.; Alegaonkar, P. S.; Berdinsky, A. S.; Yoo, J. B. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diamond and Related Materials. Proceedings of the joint 11th International Conference on New Diamond Science and Technology and the 9th Applied Diamond Conference 2006ICNDST-ADC 2006. 2006-11-01, 15 (11–12): 1839–1843. Bibcode:2006DRM....15.1839J. doi:10.1016/j.diamond.2006.08.026. 
  23. ^ Valentini, Luca; Macan, Jelena; Armentano, Ilaria; Mengoni, Francesco; Kenny, Josè M. Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules. Carbon. 2006-09-01, 44 (11): 2196–2201. doi:10.1016/j.carbon.2006.03.007. 
  24. ^ Coleman, Karl S.; Chakraborty, Amit K.; Bailey, Sam R.; Sloan, Jeremy; Alexander, Morgan. Iodination of Single-Walled Carbon Nanotubes. Chemistry of Materials. 2007-03-01, 19 (5): 1076–1081. doi:10.1021/cm062730x. 
  25. ^ Kumar, I.; Rana, S.; Cho, J. W. Cycloaddition Reactions: A Controlled Approach for Carbon Nanotube Functionalization. Chemistry: A European Journal. 2011, 17 (40): 11092–11101. PMID 21882271. doi:10.1002/chem.201101260. 
  26. ^ Ménard-Moyon, C. C.; Dumas, F. O.; Doris, E.; Mioskowski, C. Functionalization of Single-Wall Carbon Nanotubes by Tandem High-Pressure/Cr(CO)6 Activation of Diels−Alder Cycloaddition. Journal of the American Chemical Society. 2006, 128 (46): 14764–14765. PMID 17105260. doi:10.1021/ja065698g. 
  27. ^ Campidelli, Stéphane; Sooambar, Chloé; Lozano Diz, Enrique; Ehli, Christian; Guldi, Dirk M.; Prato, Maurizio. Dendrimer-Functionalized Single-Wall Carbon Nanotubes: Synthesis, Characterization, and Photoinduced Electron Transfer. Journal of the American Chemical Society. 2006-09-01, 128 (38): 12544–12552. PMID 16984205. doi:10.1021/ja063697i. 
  28. ^ Ballesteros, Beatriz; de la Torre, Gema; Ehli, Christian; Aminur Rahman, G. M.; Agulló-Rueda, F.; Guldi, Dirk M.; Torres, Tomás. Single-Wall Carbon Nanotubes Bearing Covalently Linked Phthalocyanines − Photoinduced Electron Transfer. Journal of the American Chemical Society. 2007-04-01, 129 (16): 5061–5068. PMID 17397152. doi:10.1021/ja068240n. 
  29. ^ Georgakilas, Vasilios; Bourlinos, Athanasios B.; Zboril, Radek; Trapalis, Christos. Synthesis, Characterization and Aspects of Superhydrophobic Functionalized Carbon Nanotubes. Chemistry of Materials. 2008-05-01, 20 (9): 2884–2886. doi:10.1021/cm7034079. 
  30. ^ Fabre, Bruno; Hauquier, Fanny; Herrier, Cyril; Pastorin, Giorgia; Wu, Wei; Bianco, Alberto; Prato, Maurizio; Hapiot, Philippe; Zigah, Dodzi. Covalent Assembly and Micropatterning of Functionalized Multiwalled Carbon Nanotubes to Monolayer-Modified Si(111) Surfaces. Langmuir. 2008-07-01, 24 (13): 6595–6602. PMID 18533635. doi:10.1021/la800358w. 
  31. ^ Juzgado, A.; Solda, A.; Ostric, A.; Criado, A.; Valenti, G.; Rapino, S.; Conti, G.; Fracasso, G.; Paolucci, F.; Prato, M. Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. J. Mater. Chem. B. 2017, 5 (32): 6681–6687. PMID 32264431. doi:10.1039/c7tb01557g. 
  32. ^ Umeyama, T; Baek, J; Sato, Y; Suenaga, K; Abou-Chahine, F; Tkachenko, NV; Lemmetyinen, H; Imahori, H. Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy. Nature Communications. 2015, 6: 7732. Bibcode:2015NatCo...6.7732U. PMC 4518305可免費查閱. PMID 26173983. doi:10.1038/ncomms8732. 
  33. ^ Hayden, Hugh; Gun』ko, Yurii K.; Perova, Tatiana S. Chemical modification of multi-walled carbon nanotubes using a tetrazine derivative. Chemical Physics Letters. 2007-02-12, 435 (1–3): 84–89. Bibcode:2007CPL...435...84H. doi:10.1016/j.cplett.2006.12.035. 
  34. ^ Stephenson, Jason J.; Hudson, Jared L.; Azad, Samina; Tour, James M. Individualized Single Walled Carbon Nanotubes from Bulk Material Using 96% Sulfuric Acid as Solvent. Chemistry of Materials. 2006-01-01, 18 (2): 374–377. doi:10.1021/cm052204q. 
  35. ^ Valenti, G.; Boni, A.; Melchionna, M.; Cargnello, M.; Nasi, L.; Bertoli, G.; Gorte, R. J.; Marcaccio, M.; Rapino, S.; Bonchio, M.; Fornasiero, P.; Prato, M.; Paolucci, F. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nature Communications. 2016, 7: 13549. Bibcode:2016NatCo...713549V. PMC 5159813可免費查閱. PMID 27941752. doi:10.1038/ncomms13549. 
  36. ^ Cheng, Fuyong; Imin, Patigul; Maunders, Christian; Botton, Gianluigi; Adronov, Alex. Soluble, Discrete Supramolecular Complexes of Single-Walled Carbon Nanotubes with Fluorene-Based Conjugated Polymers. Macromolecules. 2008-03-04, 41 (7): 2304–2308. Bibcode:2008MaMol..41.2304C. doi:10.1021/ma702567y. 
  37. ^ Martín, Roberto; Jiménez, Liliana; Alvaro, Mercedes; Scaiano, Juan C.; Garcia, Hermenegildo. Two-Photon Chemistry in Ruthenium 2,2′-Bipyridyl-Functionalized Single-Wall Carbon Nanotubes. Chemistry: A European Journal. 2010-06-25, 16 (24): 7282–7292. PMID 20461827. doi:10.1002/chem.200903506. hdl:11336/69087可免費查閱. 
  38. ^ Graupner, Ralf; Abraham, Jürgen; Wunderlich, David; Vencelová, Andrea; Lauffer, Peter; Röhrl, Jonas; Hundhausen, Martin; Ley, Lothar; Hirsch, Andreas. Nucleophilic−Alkylation−Reoxidation: A Functionalization Sequence for Single-Wall Carbon Nanotubes. Journal of the American Chemical Society. 2006-05-01, 128 (20): 6683–6689. PMID 16704270. doi:10.1021/ja0607281. 
  39. ^ 39.0 39.1 Syrgiannis, Zois; Hauke, Frank; Röhrl, Jonas; Hundhausen, Martin; Graupner, Ralf; Elemes, Yiannis; Hirsch, Andreas. Covalent Sidewall Functionalization of SWNTs by Nucleophilic Addition of Lithium Amides. European Journal of Organic Chemistry. 2008-05-01, 2008 (15): 2544–2550. doi:10.1002/ejoc.200800005. 
  40. ^ Liang, F.; Sadana, A. K.; Peera, A.; Chattopadhyay, J.; Gu, Z.; Hauge, R. H.; Billups, W. E. A Convenient Route to Functionalized Carbon Nanotubes. Nano Letters. 2004, 4 (7): 1257–1260. Bibcode:2004NanoL...4.1257L. doi:10.1021/nl049428c. 
  41. ^ Wunderlich, D.; Hauke, F.; Hirsch, A. Preferred functionalization of metallic and small-diameter single walled carbon nanotubes via reductive alkylation. Journal of Materials Chemistry. 2008, 18 (13): 1493. doi:10.1039/b716732f. 
  42. ^ Liang, F.; Beach, J. M.; Kobashi, K.; Sadana, A. K.; Vega-Cantu, Y. I.; Tour, J. M.; Billups, W. E. In Situ Polymerization Initiated by Single-Walled Carbon Nanotube Salts. Chemistry of Materials. 2006, 18 (20): 4764–4767. doi:10.1021/cm0607536. 
  43. ^ Mukherjee, A.; Combs, R.; Chattopadhyay, J.; Abmayr, D. W.; Engel, P. S.; Billups, W. E. Attachment of Nitrogen and Oxygen Centered Radicals to Single-Walled Carbon Nanotube Salts. Chemistry of Materials. 2008, 20 (23): 7339–7343. doi:10.1021/cm8014226. 
  44. ^ Balaban, T. S.; Balaban, M. C.; Malik, S.; Hennrich, F.; Fischer, R.; Rösner, H.; Kappes, M. M. Polyacylation of Single-Walled Nanotubes under Friedel–Crafts Conditions: An Efficient Method for Functionalizing, Purifying, Decorating, and Linking Carbon Allotropes. Advanced Materials. 2006-10-17, 18 (20): 2763–2767. doi:10.1002/adma.200600138. 
  45. ^ 45.0 45.1 Tomonari, Yasuhiko; Murakami, Hiroto; Nakashima, Naotoshi. Solubilization of Single-Walled Carbon Nanotubes by using Polycyclic Aromatic Ammonium Amphiphiles in Water—Strategy for the Design of High-Performance Solubilizers. Chemistry: A European Journal. 2006-05-15, 12 (15): 4027–4034. PMID 16550613. doi:10.1002/chem.200501176可免費查閱. 
  46. ^ Simmons, Trevor J.; Bult, Justin; Hashim, Daniel P.; Linhardt, Robert J.; Ajayan, Pulickel M. Noncovalent Functionalization as an Alternative to Oxidative Acid Treatment of Single Wall Carbon Nanotubes with Applications for Polymer Composites. ACS Nano. 2009-04-28, 3 (4): 865–870. PMID 19334688. doi:10.1021/nn800860m. 
  47. ^ Yang, Wenrong; Thordarson, Pall; Gooding, J Justin; Ringer, Simon P; Braet, Filip. Carbon nanotubes for biological and biomedical applications. Nanotechnology. 2007-10-17, 18 (41): 412001. Bibcode:2007Nanot..18O2001Y. doi:10.1088/0957-4484/18/41/412001. 
  48. ^ Yang, Hui; Wang, Shiunchin C.; Mercier, Philippe; Akins, Daniel L. Diameter-selective dispersion of single-walled carbon nanotubes using a water-soluble, biocompatible polymer. Chemical Communications. 2006, (13): 1425–7. PMID 16550288. S2CID 34102489. doi:10.1039/B515896F. 
  49. ^ Chen, Ran; Radic, Slaven; Choudhary, Poonam; Ledwell, Kimberley G.; Huang, George; Brown, Jared M.; Chun Ke, Pu. Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Applied Physics Letters. 2012-09-24, 101 (13): 133702. Bibcode:2012ApPhL.101m3702C. PMC 3470598可免費查閱. PMID 23093808. doi:10.1063/1.4756794. 
  50. ^ Wang, Zhijuan; Li, Meiye; Zhang, Yuanjian; Yuan, Junhua; Shen, Yanfei; Niu, Li; Ivaska, Ari. Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon. 2007-09-01, 45 (10): 2111–2115. doi:10.1016/j.carbon.2007.05.018. 
  51. ^ Mena-Hernando, Sofía; Pérez, Emilio M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chemical Society Reviews. 2019, 48 (19): 5016–5032. ISSN 0306-0012. PMID 31418435. doi:10.1039/C8CS00888D. 
  52. ^ de Juan, Alberto; Pouillon, Yann; Ruiz-González, Luisa; Torres-Pardo, Almudena; Casado, Santiago; Martín, Nazario; Rubio, Ángel; Pérez, Emilio M. Mechanically Interlocked Single-Wall Carbon Nanotubes. Angewandte Chemie International Edition. 2014-05-19, 53 (21): 5394–5400. PMID 24729452. doi:10.1002/anie.201402258. 
  53. ^ Pérez, Emilio M. Putting Rings around Carbon Nanotubes. Chemistry - A European Journal. 2017-09-18, 23 (52): 12681–12689. PMID 28718919. doi:10.1002/chem.201702992. 
  54. ^ Miki, Koji; Saiki, Kenzo; Umeyama, Tomokazu; Baek, Jinseok; Noda, Takeru; Imahori, Hiroshi; Sato, Yuta; Suenaga, Kazu; Ohe, Kouichi. Unique Tube-Ring Interactions: Complexation of Single-Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes. Small. June 2018, 14 (26): 1800720. PMID 29782702. doi:10.1002/smll.201800720. hdl:2433/235352可免費查閱.