3-溴苯甲醛

維基百科,自由的百科全書
3-溴苯甲醛
IUPAC名
3-Bromobenzaldehyde
英文名 3-Bromobenzaldehyde
別名 間溴苯甲醛
識別
CAS號 3132-99-8  checkY
ChemSpider 21106543
SMILES
 
  • C1=CC(=CC(=C1)Br)C=O
InChI
 
  • 1/C7H5BrO/c8-7-3-1-2-6(4-7)5-9/h1-5H
InChIKey SUISZCALMBHJQX-UHFFFAOYAJ
性質
化學式 C7H5BrO
摩爾質量 185.02 g·mol−1
外觀 無色液體
密度 1.587 g·cm−3(25 °C)[1]
1.3007 g·cm−3(30 °C)[2]
熔點 18—21 °C(291—294 K)[1]
沸點 233—236 °C(506—509 K)[1]
234.5 °C(507.6 K)[3]
溶解性 0.043 g(25 °C)[4]
危險性
警示術語 R:R22-R36/38[5]
安全術語 S:S26-S36/37[5]
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

3-溴苯甲醛是一種有機化合物,化學式為C7H5BrO。它在室溫為無色液體。[6]

製備

3-溴苯甲醛可由苯甲醛氯化鋁催化下、在1,2-二氯乙烷中於40-45°C反應得到;[7]或通過3-溴苯甲醇的催化氧化反應製得。[8][9]

3-溴苯甲醛肟和四氯化鈦碘化鈉乙腈中反應,也能得到3-溴苯甲醛。[10]

性質

3-溴苯甲醛的C–Br鍵和醛基都可發生反應。例如,它可以和苯硼酸在鈀催化劑和鹼的存在下發生鈴木偶聯反應(C–C偶聯),得到聯苯-3-甲醛:[11][12]

3-溴苯甲醛參與的C–C偶聯反應

它和活潑亞甲基化合物可以發生克腦文蓋爾縮合反應,例如和氰乙酸乙酯反應,生成3-(3-溴苯基)-2-氰基丙烯酸乙酯[13];和丙二腈反應,生成3-溴亞苄基丙二腈[14]

3-溴苯甲醛的醛基和活潑亞甲基化合物(氰乙酸乙酯)反應
3-溴苯甲醛的醛基和活潑亞甲基化合物(丙二腈)反應

它和胺可以發生C–N偶聯反應,如和苄胺反應,得到N-(3-溴亞苄基)苄胺;[15]和4-氨基嗎啉反應,得到N-(3-溴亞苄基)氨基嗎啉。[16]

其醛基也可以發生氧化還原反應,如它可以被硼氫化鈉還原為3-溴苯甲醇[17];在催化下被氫氣還原為3-溴甲苯[18];或者被氧氣[19]過氧化叔丁醇[20]等氧化劑氧化為3-溴苯甲酸。

參考文獻

  1. ^ 1.0 1.1 1.2 3-Bromobenzaldehyde. Sigma-Aldrich. [2021-07-10]. 
  2. ^ Bergmann, Ernst D.; Zimkin, E.; Pinchas, S. Reaction products of primary β-hydroxy amines with carbonyl compounds. II. Molecular refraction and infrared spectra. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique, 1952. 71: 168-191. ISSN: 0370-7539. CODEN: RTCPB4.
  3. ^ "PhysProp" data were obtained from Syracuse Research Corporation of Syracuse, New York (US). Retrieved from SciFinder. [2021-07-10].
  4. ^ Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 ((C) 1994-2021 ACD/Labs). Retrieved from SciFinder. [2021-07-10].
  5. ^ 5.0 5.1 A11941: 3-Bromobenzaldehyde, 97%. Alfa Aesar. [11 October 2013]. (原始內容存檔於2015年6月10日). 
  6. ^ 间溴苯甲醛. ChemicalBook. [2021-05-10]. (原始內容存檔於2021-05-10). 
  7. ^ 趙昊昱,吳朝華. 間溴苯甲醛. 醫藥中間體及其化工原料, 2004. 4: 31
  8. ^ Lagerblom, Kalle; Wrigstedt, Pauli; Keskiväli, Juha; Parviainen, Arno; Repo, Timo. Iron-Catalysed Selective Aerobic Oxidation of Alcohols to Carbonyl and Carboxylic Compounds. ChemPlusChem. 2016, 81 (11): 1160–1165. ISSN 2192-6506. doi:10.1002/cplu.201600240. 
  9. ^ Wang, Lianyue; Bie, Zhixing; Shang, Sensen; Lv, Ying; Li, Guosong; Niu, Jingyang; Gao, Shuang. Bioinspired aerobic oxidation of alcohols with a bifunctional ligand based on bipyridine and TEMPO. RSC Advances. 2016, 6 (41): 35008–35013. ISSN 2046-2069. doi:10.1039/C6RA05536B. 
  10. ^ Balicki, Roman; Kaczmarek, Lukasz. Mild Reductive Deoximation with TiCl4/NaI Reagent System. Synthetic Communications. 1991, 21 (17): 1777–1782. ISSN 0039-7911. doi:10.1080/00397919108021576. 
  11. ^ Li, Hongmiao; Tan, Xin; Zhang, Jianyong. Coordination-Driven Terpyridyl Phosphine Pd(II) Gels. Chinese Journal of Chemistry. 2015, 33 (1): 141–146. ISSN 1001-604X. doi:10.1002/cjoc.201400479. 
  12. ^ Zawartka, Wojciech; Pośpiech, Piotr; Cypryk, Marek; Trzeciak, Anna M. Palladium supported on aminopropyl-functionalized polymethylsiloxane microspheres: Simple and effective catalyst for the Suzuki–Miyaura C–C coupling. Journal of Molecular Catalysis A: Chemical. 2015, 407: 230–235. ISSN 1381-1169. doi:10.1016/j.molcata.2015.07.002. 
  13. ^ Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N.; Song, Yu-Fei. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions. Chemistry - A European Journal. 2015, 21 (42): 14862–14870. ISSN 0947-6539. doi:10.1002/chem.201501953. 
  14. ^ Zhao, Shen; Chen, Yang; Song, Yu-Fei. Tri-lacunary polyoxometalates of Na8H[PW9O34] as heterogeneous Lewis base catalysts for Knoevenagel condensation, cyanosilylation and the synthesis of benzoxazole derivatives. Applied Catalysis A: General. 2014, 475: 140–146. ISSN 0926-860X. doi:10.1016/j.apcata.2014.01.017. 
  15. ^ Ou, Xiaoxu; Labes, Ricardo; Battilocchio, Claudio; Ley, Steven V. Preparation of homoallylic amines via a three-component coupling process. Organic & Biomolecular Chemistry. 2018, 16 (36): 6652–6654. ISSN 1477-0520. doi:10.1039/C8OB01831F. 
  16. ^ Xu, Pan; Wang, Guoqiang; Zhu, Yuchen; Li, Weipeng; Cheng, Yixiang; Li, Shuhua; Zhu, Chengjian. Visible-Light Photoredox-Catalyzed C−H Difluoroalkylation of Hydrazones through an Aminyl Radical/Polar Mechanism. Angewandte Chemie International Edition. 2016, 55 (8): 2939–2943. ISSN 1433-7851. doi:10.1002/anie.201508698. 
  17. ^ Rayati, Saeed; Bohloulbandi, Elaheh; Zakavi, Saeed. Sodium borohydride reduction of aldehydes catalyzed by an oxovanadium(IV) Schiff base complex encapsulated in the nanocavity of zeolite-Y. Inorganic Chemistry Communications. 2015, 54: 38–40. ISSN 1387-7003. doi:10.1016/j.inoche.2015.02.004. 
  18. ^ Wang, Shuguo; Zhou, Peng; Jiang, Liang; Zhang, Zehui; Deng, Kejian; Zhang, Yuhua; Zhao, Yanxi; Li, Jinlin; Bottle, Steven; Zhu, Huaiyong. Selective deoxygenation of carbonyl groups at room temperature and atmospheric hydrogen pressure over nitrogen-doped carbon supported Pd catalyst. Journal of Catalysis. 2018, 368: 207–216. ISSN 0021-9517. doi:10.1016/j.jcat.2018.10.017. 
  19. ^ Mukhopadhyay, Chhanda; Datta, Arup. Bismuth(III) nitrate pentahydrate: a stoichiometric reagent for microwave induced mild and highly efficient aerial oxidation of aromatic aldehydes under solvent-free conditions. Catalysis Communications. 2008, 9 (15): 2588–2592. ISSN 1566-7367. doi:10.1016/j.catcom.2008.07.019. 
  20. ^ Yang, Fan; Qiu, Tian; Chi, Cheng; Liang, Shuang; Deng, Lei; Wang, Xuyang; Wang, Chunxia; Fu, Jingyi; Wang, Ying; Li, Yongfeng. Synergistic effects of nitrogen-doped graphene and Fe2O3 nanocomposites in catalytic oxidization of aldehyde with O2. Chemical Engineering Journal. 2017, 330: 880–889. ISSN 1385-8947. doi:10.1016/j.cej.2017.08.022.