跳至內容

Caco-2細胞

維基百科,自由的百科全書
Caco-2細胞

Caco-2人類結腸腺癌細胞系,最初是在1977年紀念斯隆-凱特琳癌症中心研究員從一名72歲的白人男性結腸腺癌患者分離出來。

特徵

Caco-2細胞擁有與小腸上皮細胞刷狀緣英語Brush border相關的酶系英語Cyclic enzyme system[1][2],而且其結構、標誌酶的特異性表達與滲透性等方面均與人類小腸上皮細胞相近[3]。在體外培養Caco-2細胞的過程中,會發現生長在多孔膜上的Caco-2細胞會形成朝向上皮樣分化單細胞層英語Monolayer。Caco-2細胞具有微絨毛結構,並且與相鄰的細胞緊密地結合,同時又會分泌水解酶,以及合成胺基酸等的載體轉運系統[1]

科研用途

Caco-2細胞在遺傳學等方面均是最令人滿意的上皮細胞系[4],所以Caco-2細胞構建的模型,不僅是吸收營養素毒素效果最良好的體外模型,還可以模擬小腸上皮細胞吸收、代謝及轉運口服藥物與營養物質分子等的過程[5][6]。這可以預測不同轉運途徑的食物營養物質在體內的吸收、營養物質的化學結構和體內轉運關係、營養物質代謝穩定性氫離子濃度指數對營養物質吸收的影響等[7]。因此,Caco-2細胞廣泛應用於開發新型藥物、研究腸內藥物吸收英語Absorption (pharmacology)機制等,甚至被應用在葉酸吸收與紅血球生成素作用的研究[8][9]

營養方面的部分研究
研究 描述 資料來源
植物凝集素對食物因子的運輸作用 研究發現其會增加離子異黃酮的運輸,但是不會影響糖苷配基及鵝肌肽等的運輸,並且表明其對Caco-2細胞緊密連接的作用較微弱。 [10]
卵黃高磷蛋白磷酸肽對過氧化氫的保護作用 研究發現其會抑制Caco-2細胞 (細胞已被過氧化氫處理) 中體內氧化應激標誌物丙二醛的生成。 [11]
Caco-2細胞對水溶性秀珍菇多醣抗氧化劑的調控機制 研究發現其能抑制消化道中結腸癌對Caco-2細胞無細胞基底膜的入侵。 [12]
對Caco-2細胞緊密連接性及通透性的影響 有研究發現殼聚糖、聚陽離子及多聚賴氨酸都能增強細胞的緊密連接性及通透性,前兩者受濃度的影響,後者受分子量的影響,或會令細胞黏膜出現變化。 [13]
藍莓花青素提取物的吸收情況 花青素是以完整糖醛形式通過Caco-2細胞,但是轉運吸收效率因水溶性花色素苷親脂性差而低於部分苷元多酚 [14]
膳食多酚對攝取葡萄糖的影響 研究發現糖苷配基抑制著Caco-2細胞攝取葡萄糖,而糖苷則抑制著葡萄糖的轉運。鈣離子存在時,有利於細胞通過鈉依賴型葡萄糖共同運輸蛋白-1英語Sodium/glucose cotransporter 1 (一種次級葡萄糖載體蛋白) 攝取葡萄糖。鈣離子不存在時,則有利於細胞通過葡萄糖載體蛋白英語Glucose transporter攝取葡萄糖。 [15]
類胡蘿蔔素的吸收情況 研究發現Caco-2細胞攝取的胡蘿蔔素玉米黃素均高於葉黃素 [16]
對細胞中膽固醇吸收的影響 研究發現經毛地黃黃酮五羥黃酮處理的Caco-2細胞,其膽固醇攝取明顯地降低。 [17]
異黃酮的攝取和代謝情況 研究發現異黃酮比大豆苷更有效地轉運至Caco-2細胞,表明異黃酮糖苷配基因具有一定的親脂性而較葡萄糖苷有效攝入至腸細胞。 [18]
黃芩苷及黃芩素細胞中的吸收和排泄 研究發現黃芩素被葡萄糖醛酸化英語Glucuronidation成黃芩苷,進而通過多藥耐藥相關蛋白2英語Multidrug resistance-associated protein 2等的外排作用,從頂端表面排泄出來。 [19]

衍生細胞系

參考資料

  1. ^ 1.0 1.1 Hidalgo, IJ; Raub, TJ; Borchardt, RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability.. Gastroenterology. 1989-03, 96 (3): 736–49 [2019-12-17]. PMID 2914637. (原始內容存檔於2019-12-17). 
  2. ^ Hubatsch, I; Ragnarsson, EG; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers.. Nature protocols. 2007, 2 (9): 2111–9 [2019-12-17]. PMID 17853866. doi:10.1038/nprot.2007.303. (原始內容存檔於2019-12-17). 
  3. ^ Jobbágyi, P; Heszberger, I. [Local cryotechnique and prevention of freezing injuries].. Klinische Monatsblatter fur Augenheilkunde. 1966, 149 (2): 246–51 [2019-12-17]. PMID 5986493. 
  4. ^ Inaba, M; Murota, K; Nikawadori, M; Kishino, E; Matusda, R; Takagi, M; Ohkubo, T; Tanaka, T; Terao, J; Tokumura, A. Extracellular metabolism-dependent uptake of lysolipids through cultured monolayer of differentiated Caco-2 cells.. Biochimica et biophysica acta. 2014-01, 1841 (1): 121–31 [2019-12-17]. PMID 24120920. doi:10.1016/j.bbalip.2013.10.007. (原始內容存檔於2019-12-17). 
  5. ^ Gouriet, F; Saby, L; Delaunay, E; Cammilleri, S; le Dolley, Y; Riberi, A; Casalta, JP; Habib, G; Raoult, D. Incidental diagnosis of colonic tumor by PET/CT in infectious endocarditis.. The Journal of infection. 2013-07, 67 (1): 88–90 [2019-12-17]. PMID 23523828. doi:10.1016/j.jinf.2013.03.004. (原始內容存檔於2019-12-17). 
  6. ^ Artursson, P; Palm, K; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport.. Advanced drug delivery reviews. 2001-03-01, 46 (1-3): 27–43 [2019-12-17]. PMID 11259831. doi:10.1016/s0169-409x(00)00128-9. (原始內容存檔於2019-12-17). 
  7. ^ Tavelin, S; Gråsjö, J; Taipalensuu, J; Ocklind, G; Artursson, P. Applications of epithelial cell culture in studies of drug transport.. Methods in molecular biology (Clifton, N.J.). 2002, 188: 233–72 [2019-12-17]. PMID 11987548. doi:10.1385/1-59259-185-X:233. (原始內容存檔於2019-12-17). 
  8. ^ Ashokkumar, B; Mohammed, ZM; Vaziri, ND; Said, HM. Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells.. The American journal of clinical nutrition. 2007-07, 86 (1): 159–66 [2019-12-17]. PMID 17616776. doi:10.1093/ajcn/86.1.159. (原始內容存檔於2019-12-17). 
  9. ^ Verwei, M; van den Berg, H; Havenaar, R; Groten, JP. Effect of folate-binding protein on intestinal transport of folic acid and 5-methyltetrahydrofolate across Caco-2 cells.. European journal of nutrition. 2005-06, 44 (4): 242–9 [2019-12-17]. PMID 15316828. doi:10.1007/s00394-004-0516-9. (原始內容存檔於2019-12-17). 
  10. ^ Ohno, Y; Naganuma, T; Ogawa, T; Muramoto, K. Effect of lectins on the transport of food factors in caco-2 cell monolayers.. Journal of agricultural and food chemistry. 2006-01-25, 54 (2): 548–53 [2019-12-22]. PMID 16417319. doi:10.1021/jf052040y. (原始內容存檔於2019-12-22). 
  11. ^ Katayama, S; Xu, X; Fan, MZ; Mine, Y. Antioxidative stress activity of oligophosphopeptides derived from hen egg yolk phosvitin in Caco-2 cells.. Journal of agricultural and food chemistry. 2006-02-08, 54 (3): 773–8 [2019-12-22]. PMID 16448181. doi:10.1021/jf052280d. (原始內容存檔於2019-12-22). 
  12. ^ Soler-Rivas, Cristina; Ramírez-Anguiano, Ana Cristina; Reglero, Guillermo; Santoyo, Susana. Effect of cooking, digestion and Caco-2 cells absorption on the radical scavenging activities of edible mushrooms. International Journal of Food Science & Technology. 2009-11, 44 (11): 2189–2197. doi:10.1111/j.1365-2621.2009.02059.x. 
  13. ^ Ranaldi, G; Marigliano, I; Vespignani, I; Perozzi, G; Sambuy, Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line(1).. The Journal of nutritional biochemistry. 2002-03, 13 (3): 157–167 [2019-12-22]. PMID 11893480. doi:10.1016/s0955-2863(01)00208-x. (原始內容存檔於2019-12-22). 
  14. ^ Yi, W; Akoh, CC; Fischer, J; Krewer, G. Absorption of anthocyanins from blueberry extracts by caco-2 human intestinal cell monolayers.. Journal of agricultural and food chemistry. 2006-07-26, 54 (15): 5651–8 [2019-12-22]. PMID 16848559. doi:10.1021/jf0531959. (原始內容存檔於2019-12-22). 
  15. ^ Johnston, K; Sharp, P; Clifford, M; Morgan, L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells.. FEBS letters. 2005-03-14, 579 (7): 1653–7 [2019-12-22]. PMID 15757656. doi:10.1016/j.febslet.2004.12.099. (原始內容存檔於2019-12-22). 
  16. ^ Liu, CS; Glahn, RP; Liu, RH. Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion.. Journal of agricultural and food chemistry. 2004-06-30, 52 (13): 4330–7 [2019-12-23]. PMID 15212488. doi:10.1021/jf040028k. (原始內容存檔於2019-12-23). 
  17. ^ Nekohashi, M; Ogawa, M; Ogihara, T; Nakazawa, K; Kato, H; Misaka, T; Abe, K; Kobayashi, S. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter niemann-pick c1-like 1 in caco-2 cells and rats.. PloS one. 2014, 9 (5): e97901 [2019-12-23]. PMID 24859282. doi:10.1371/journal.pone.0097901. (原始內容存檔於2019-12-23). 
  18. ^ Murota, K; Shimizu, S; Miyamoto, S; Izumi, T; Obata, A; Kikuchi, M; Terao, J. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: comparison of isoflavonoids and flavonoids.. The Journal of nutrition. 2002-07, 132 (7): 1956–61 [2019-12-23]. PMID 12097676. doi:10.1093/jn/132.7.1956. (原始內容存檔於2019-12-23). 
  19. ^ Akao, T; Hanada, M; Sakashita, Y; Sato, K; Morita, M; Imanaka, T. Efflux of baicalin, a flavone glucuronide of Scutellariae Radix, on Caco-2 cells through multidrug resistance-associated protein 2.. The Journal of pharmacy and pharmacology. 2007-01, 59 (1): 87–93 [2019-12-23]. PMID 17227625. doi:10.1211/jpp.59.1.0012. (原始內容存檔於2019-12-23). 

外部連結