任何带有结构群 G 的主丛 给出了一个李群胚,即在 M 上的 ,这里 G 作用在二元组的每个分量上。通过配对群胚相容的表示定义复合。
森田态射与光滑栈
除了群胚的同构,李群胚之间有一个粗糙一点的等价关系,即所谓的森田等价。一个很一般的例子是 切赫群胚之间的森田态射,如下所述。设 M 是一个光滑流形而 是 M 的开覆盖。定义不交并 ,显然有淹没 。为了说明流形 M 的结构定义态射集合 ,这里。源与靶映射定义为嵌入 与 。如果我们将 视为 M 的子集,乘法是显然的( 与 一致的点事实上在 M 中相同,也在 里)。
这个切赫群胚事实上是 的拉回群胚,即 M 在 p 下的平凡群胚。这便是什么为森田态射。
为了得到等价关系的概念,我们需要这个构造具有对称性与传递性。在这种意义下,我们说两个群胚 与 森田等价当且仅当存在第三个群胚 以及从 G 到 K 与 H 到 K 的两个森田态射。传递性是群胚主丛范畴中有趣的构造。
Alan Weinstein, Groupoids: unifying internal and external symmetry, AMS Notices, 43 (1996), 744-752. Also available as arXiv:math/9602220 (页面存档备份,存于互联网档案馆)
Kirill Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge U. Press, 1987.
Kirill Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge U. Press, 2005