在范畴论中,正规态射是一类可以自然地分解成单射与满射的态射。使所有态射皆为正规态射的范畴称为正规范畴。
定义
设为一个有有限射影极限与归纳极限的范畴。设为态射。设为积的投影,而为上积的内射。定义:
- 上像:
- 像:
根据极限性质,自然态射是满射,而则是单射。此外还存在唯一一个态射,使得合成态射
正好是。
若为同构,则称为正规态射;正规态射可以写成满射与单射的合成。所有态射皆为正规态射的范畴称为正规范畴。
性质
- 以下三个条件等价:
- 为严格满射
- 为同构
- 序列正合
- 如果同时是严格满射与严格单射,则为同构。
- 恒为严格满射。
例子
正规态射的重要特性在于它分解为满射与单射,此分解在阿贝尔范畴中扮演关键角色。
对于集合范畴、群范畴以及一个环上的模范畴,严格性并不成问题。一旦引入额外结构,状况将大大地复杂化:例如取为拓扑向量空间范畴,中存在所有有限的积与上积。中的态射即连续线性映射,其像是空间配与的子空间拓扑,上像则是配与的商拓扑;后者一般较前者为细。
文献
- Masaki Kashiwara and Pierre Schapira, Categories and Sheaves, Springer. ISBN 3540279490
外部链接