跳转到内容

9-溴菲

维基百科,自由的百科全书
9-溴菲
英文名 9-Bromophenanthrene
别名 9-溴代菲
识别
CAS号 573-17-1  checkY
SMILES
 
  • c1c(cccc2)c2c(cccc3)c3c1Br
性质
化学式 C14H9Br
摩尔质量 257.13 g·mol⁻¹
外观 白色晶体粉末[1]
密度 1.409 g·cm−3[1]
熔点 63 °C(336 K)[2]
沸点 190 °C(463 K)(1.2 Torr)[2]
溶解性 难溶
溶解性 可溶于乙醇
相关物质
其他阴离子 9-碘菲
相关化学品 9-溴蒽
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

9-溴菲是一种有机化合物,化学式为C14H9Br,它是溴菲的同分异构体之一。

制备

由于在发生亲电取代反应时,9位的反应活性最高[3],因此可以用直接对溴化得到。[4]

N-溴代丁二酰亚胺[5]四丁基三溴化铵[6]也可作为溴化试剂进行反应。

反应

9-溴菲具有卤代烃的通性,如它和苯硼酸在Pd2(dba)3的催化下发生铃木偶联反应,生成9-苯基菲;[7]CuI-Pd(PPh3)2Cl2的催化下和4-叔丁基苯乙炔发生薗头偶合反应,生成9-(4-叔丁基苯)乙炔基菲。[8]它和三苯基膦苯酚中加热回流,得到9-菲基三苯基溴化𬭸。[9]它和苯硫酚钠在N-甲基吡咯烷酮中反应,得到9-甲硫基菲;硒酚盐可以发生类似反应:[10]

它在液氨中和氨基钠发生取代反应,生成9-氨基菲;[11]它和三(三甲基硅基)硅烷在偶氮二异丁腈的存在下发生还原反应,生成菲。[12]

它也可以经反应得到金属有机化合物,如和镁反应,得到9-菲基溴化镁[13];和正丁基锂反应,得到9-菲基锂,[14]并可通过进一步反应来制备其它金属有机化合物,如三(9-菲基)锑、三(9-菲基)铋等[15]。它和四(三乙基膦)铂(0)反应,得到溴化-9-菲基二(三乙基膦)铂[16]

用途

9-溴菲可用于有机合成及磷光材料的研究。[17][18]

参考文献

  1. ^ 1.0 1.1 冯美荣, 崔子祥, 薛永强. 合成9-溴菲影响因素的研究. 太原理工大学学报, 2008. 39 (6): 570-572.
  2. ^ 2.0 2.1 Buu-Hoi. The halogenation of aromatic and heterocyclic compounds. Justus Liebigs Annalen der Chemie, 1944. 556: 1-9. ISSN: 0075-4617.
  3. ^ 汤德祥. 菲亲电取代反应活性的探讨. 温州师范学院学报(自然科学版), 2004. 25 (5):10-13.
  4. ^ Nguyen, Thi Thanh Thuy; Guyon, Hélène; Nguyen, Kim Phi Phung; Boussonnière, Anne; Mortier, Jacques; Castanet, Anne-Sophie. Chiral Ligand-Mediated Nucleophilic Aromatic Substitution of Naphthoic Acids: A Fast and Efficient Access to Axially Chiral Biaryls. European Journal of Organic Chemistry. 2020, 2020 (25): 3829–3833. ISSN 1434-193X. doi:10.1002/ejoc.202000317. 
  5. ^ George, Stephen R. D.; Frith, Thomas D. H.; Thomas, Donald S.; Harper, Jason B. Putting corannulene in its place. Reactivity studies comparing corannulene with other aromatic hydrocarbons. Organic & Biomolecular Chemistry. 2015, 13 (34): 9035–9041. ISSN 1477-0520. doi:10.1039/C5OB01215E. 
  6. ^ Chaudhuri, Mihir K.; Khan, Abu T.; Patel, Bhisma K.; Dey, Deepa; Kharmawophlang, Wancydora; Lakshmiprabha, T.R.; Mandal, Gagan C. An environmentally benign synthesis of organic ammonium tribromides (OATB) and bromination of selected organic substrates by tetrabutylammonium tribromide (TBATB). Tetrahedron Letters. 1998, 39 (44): 8163–8166. ISSN 0040-4039. doi:10.1016/S0040-4039(98)01818-8. 
  7. ^ Dai, Wei-Min; Li, Yannain; Zhang, Ye; Wah Lai, Kwong; Wu, Jinlong. A novel class of amide-derived air-stable P,O-ligands for Suzuki cross-coupling at low catalyst loading. Tetrahedron Letters. 2004, 45 (9): 1999–2001. ISSN 0040-4039. doi:10.1016/j.tetlet.2003.12.142. 
  8. ^ Meng, Lingkui; Fujikawa, Takao; Kuwayama, Motonobu; Segawa, Yasutomo; Itami, Kenichiro. Thiophene-Fused π-Systems from Diarylacetylenes and Elemental Sulfur. Journal of the American Chemical Society. 2016, 138 (32): 10351–10355. ISSN 0002-7863. doi:10.1021/jacs.6b06486. 
  9. ^ Huang, Wenhua; Zhong, Chun-Hong. Metal-Free Synthesis of Aryltriphenylphosphonium Bromides by the Reaction of Triphenylphosphine with Aryl Bromides in Refluxing Phenol. ACS Omega. 2019, 4 (4): 6690–6696. ISSN 2470-1343. doi:10.1021/acsomega.9b00568. 
  10. ^ Chan, Shiuh-Chuan; Jang, Jing-Pei; Cherng, Yie-Jia. Microwave-assisted synthesis of substituted phenanthrenes, anthracenes, acenaphthenes, and fluorenes. Tetrahedron. 2009, 65 (10): 1977–1981. ISSN 0040-4020. doi:10.1016/j.tet.2009.01.029. 
  11. ^ Altiparmakian, R. H.; Braithwaite, R. S. W. A new route to 9-phenanthrylamine. Journal of the Chemical Society C: Organic. 1967: 1818. ISSN 0022-4952. doi:10.1039/j39670001818. 
  12. ^ Odedra, Arjan; Geyer, Karolin; Gustafsson, Tomas; Gilmour, Ryan; Seeberger, Peter H. Safe, facile radical-based reduction and hydrosilylation reactions in a microreactor using tris(trimethylsilyl)silane. Chemical Communications. 2008, (26): 3025. ISSN 1359-7345. doi:10.1039/b803715a. 
  13. ^ Kurata, Yuto; Otsuka, Shinya; Fukui, Norihito; Nogi, Keisuke; Yorimitsu, Hideki; Osuka, Atsuhiro. Aromatic Metamorphosis of Dibenzofurans into Triphenylenes Starting with Nickel-Catalyzed Ring-Opening C–O Arylation. Organic Letters. 2017, 19 (6): 1274–1277. ISSN 1523-7060. doi:10.1021/acs.orglett.6b03861. 
  14. ^ Dent, BR; Halton, B. Studies in the Cycloproparene Series: 1,1-Dichloro-1h-Cyclopropa[l]Phenanthrene. Australian Journal of Chemistry. 1986, 39 (11): 1789. ISSN 0004-9425. doi:10.1071/CH9861789. 
  15. ^ Lee, Eun Ji; Hong, Jin Seok; Kim, Tae-Jeong; Kang, Youngjin; Han, Eun Me; Lee, Jae Jung; Song, Kihyung; Kim, Dong-Uk. Synthesis and Structural Characterization of Main Group 15 Organometallics R3M and R(Ph)2P(=N-Ar)(M = P, Sb, Bi; R = phenanthrenyl; Ar = 2,6-iPr2-C6H3). Bulletin of the Korean Chemical Society. 2005, 26 (12): 1946–1952. ISSN 0253-2964. doi:10.5012/bkcs.2005.26.12.1946. 
  16. ^ Raphael Karikachery, Alice; Lee, Han Baek; Masjedi, Mehdi; Ross, Andreas; Moody, Morgan A.; Cai, Xiaochen; Chui, Megan; Hoff, Carl D.; Sharp, Paul R. High Quantum Yield Molecular Bromine Photoelimination from Mononuclear Platinum(IV) Complexes. Inorganic Chemistry. 2013, 52 (7): 4113–4119. ISSN 0020-1669. doi:10.1021/ic4004998. 
  17. ^ Mikhailov, B. M.; Chernova, N. G. Phenanthrene series. I. Synthesis of phenanthrene derivatives by means of organolithium compounds. Zhurnal Obshchei Khimii, 1951. 21. 1517-1524. ISSN: 0044-460X.
  18. ^ Zhu, Qing; Wang, Hui; Zhao, Xiao Ran; Jin, Wei Jun. The phosphorescent behaviors of 9-bromo- and 9-iodophenanthrene in crystals modulated by π–π interactions, C–H⋯π hydrogen bond and C–I⋯π halogen bond. Journal of Photochemistry and Photobiology A: Chemistry. 2014, 274: 98–107. ISSN 1010-6030. doi:10.1016/j.jphotochem.2013.10.007.