跳转到内容

本页使用了标题或全文手工转换
维基百科,自由的百科全书

几何学拓扑学以及数学的相关分支,空间中的用于描述给定空间中一种特别的对象,在空间中有类似于体积、面积、长度或其他高维类似物。点是零维度对象。点作为最简单的几何概念,通常作为几何物理矢量图形和其他领域中的最基本的组成部分。

数学的点-历史

亚里士多德的著作《论天体》第三册已经提到数学中的点没有大小[1][2],他依此来驳斥帕雷托将数学的几何形视为物理实体的构成要素[3](参见正多面体),并强调这与数学思想相违背[4]:“数学的平面没有厚度,不能构造物理实体。”他论述说,如果数学平面有厚度,那么数学的线就要有宽度才能够构成平面,而数学的点必须有大小才能构成线,但数学已经明确定义数学的点没有大小,帕雷托的理论与数学相抵触。从这里,亚里士多德陈述说,几何对象只能分割成相同类型的几何对象(而不会变成其它东西):平面只能分割成平面,而不能分割成线;线只能分割成线,不能分割成点;这样可以无限分割,而不是像原子论者所说,最后分割到原子(或是基本构成要素)就停止。

因此,早在欧几里得的《几何原本》之前,数学的点只用来标示位置的用法已经是共识。亚里士多德提到点的时候,用的字是στιγμὰς,是可见的点(spot),而欧几里得则(小心翼翼的)采用另一个字σημεῖόν,原意是“标示”(sign):

σημεῖόν ἐστιν, οὗ μέρος οὐθέν.[5]

这句话的意思是:“点是没有部分(μέρος)的东西”。点没有部分,也就没有大小[6]。这论点源自亚里士多德的“部分-整体”理论(part–whole theory):

"the parts are causes of the whole"[7](整体由部分构成。)

几何原本》的阿拉伯文版将σημεῖόν译为نقطة[8],意思回到亚里士多德的可见点[9];拉丁文版则将σημεῖόν翻译为punctum[10],意思是尖物刺成的小洞。

欧几里得几何的点

二维欧式空间中的有限点集(蓝色).

欧几里得几何是空间中只有位置,没有大小的图形。点是整门欧几里得几何学的基础,后者是研究点,线的一种科学。欧几里得最初含糊的定义点作为“没有部分的东西”。在二维欧式空间,点表示为有序对,第一个数习惯表示水平位置,通常记为,第二个数习惯表示竖直位置,通常记为。这思想很易延伸到三维情况,此时一点表示为有序三元组,第三个数表示高度,通常记为z。更加一般的情况下,点表示为有序n元组,其中n为点所在的空间的维度。

现代数学语言,任何集合的元素都叫“点”,但与三维空间的点可以没有任何关系。

其他数学分支的点

点集拓扑的点,定义为拓扑空间中的集合的元素。

尽管点看作是几何学和拓扑学的主要基本概念,但非交换几何非点集拓扑等几何和拓扑理论并不需要点的概念。“非点空间”不是作为集合来定义,而是以某种像几何的函数空间结构(代数或逻辑的):连续函数代数或集合代数。

算术的点

1点(Basis Point)定义为“百分之零点零一”(0.01%)或“百分点的一百分之一”,可用符号‱表示。它在计算利率、汇率、股票价格等范畴广泛应用,这些范畴须计算极微小的百分数。简单来说,一百点=百分之一(100‱=1%)、一万点=百分之一百=一(10000‱=100%=1)。比较百分数除了可以用百分点,两个百分数之间的细微差距也可用点来表达,如4.02%与4.05%相差0.03百分点。

参考资料

  1. ^ 论天体,第三册页面存档备份,存于互联网档案馆),Thomas Aquinas 翻译与注解
  2. ^ 论天体,第三册页面存档备份,存于互联网档案馆),The Internet Classics Archive
  3. ^ Ancient Atomism, 3. Plato and Platonists页面存档备份,存于互联网档案馆), 史丹佛哲学百科
  4. ^ WHY DOES PLATO'S ELEMENT THEORY CONFLICT WITH MATHEMATICS (PDF). [2016-05-23]. (原始内容存档 (PDF)于2021-04-02). 
  5. ^ 几何原本,原文第一册,定义一页面存档备份,存于互联网档案馆),柏修斯数字图书馆
  6. ^ Euclid's Elements of Geometry: From the Latin Translation of Commandine, by John Keill
  7. ^ Metaphysics, Book V页面存档备份,存于互联网档案馆), The Internet Classics Archive
  8. ^ Euclid, Elements页面存档备份,存于互联网档案馆),阿拉伯文版
  9. ^ Wiktionary: نقطة. [2016-05-23]. (原始内容存档于2021-04-02). 
  10. ^ Euclid's Elements in the middle ages, Boethius tradition. [2016-05-23]. (原始内容存档于2021-04-02).